Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Curr Pharm Des ; 29(37): 2988-2995, 2023.
Article in English | MEDLINE | ID: mdl-37936451

ABSTRACT

INTRODUCTION: The incidence of non-alcoholic fatty liver disease (NAFLD) has increased in recent years. Hepatic fibrosis (HF) is an important step in the progression of NAFLD to cirrhosis and even carcinoma and is also recognized as a possible reversal phase. AIMS: We previously found that the aqueous extract of Sedum Lineare Thunb. has hepatoprotective effects. This study investigated the hepatoprotective effect and mechanism of the Sedum Lineare Thunb. n-butanol phase (SLNP) on HF in rats. METHODS: Animals were intraperitoneally injected with thioacetamide solution twice a week for 8 weeks to prepare an HF model and were administered the corresponding drugs or an equal volume of normal saline by intragastric administration once a day for 8 weeks. Liver function, hydroxyproline and malondialdehyde (MDA) content, superoxide dismutase (SOD), Na+-K+-ATPase, and Ca2+-Mg2+-ATPase were analyzed using colorimetric methods. Moreover, mRNA expression and protein levels in the liver tissue were detected via quantitative polymerase chain reaction and western blotting, respectively. RESULTS: The results showed that SLNP could effectively improve the liver function of rats with HF and significantly reduce the content of hydroxyproline; the mRNA expression and protein levels of alpha-smooth muscle actin (α-SMA), collagen I, III, and IV, transforming growth factor beta 1 (TGF-ß1), Smad2/3, and Smad4 were also significantly reduced. Simultaneously, SLNP significantly increased the activities of SOD, Na+-K+- ATPase, and Ca2+-Mg2+-ATPase in the rat liver tissues, whereas it reduced the levels of MDA and SOD in the serum and liver tissues. CONCLUSION: This study revealed that SLNP elicits an anti-fibrotic effect by inhibiting oxidative stress and stellate cell activation, thereby reducing the formation and deposition of the extracellular matrix. The TGF-ß1/Smads signaling pathway may be involved in this process.


Subject(s)
Non-alcoholic Fatty Liver Disease , Transforming Growth Factor beta1 , Rats , Animals , Transforming Growth Factor beta1/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Hydroxyproline/adverse effects , Hydroxyproline/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver , Superoxide Dismutase/adverse effects , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism , Adenosine Triphosphatases/adverse effects , Adenosine Triphosphatases/metabolism
2.
Biomed Pharmacother ; 135: 111215, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33418303

ABSTRACT

Neuropathic pain is still a critical public health problem worldwide. Thereby, the search for novel and more effective strategies against neuropathic pain is urgently considered. It is known that neuroinflammation plays a crucial role in the pathogenesis of neuropathic pain. SedumLineare Thunb. (SLT), a kind of Chinese herb originated from the whole grass of Crassulaceae plant, was reported to possess anti-inflammatory activity. However, whether SLT has anti-nociceptive effect on neuropathic pain and its possible underlying mechanisms remains poorly elucidated. In this study, a rat model of neuropathic pain induced by spared nerve injury (SNI)was applied. SLT (p.o.) was administered to SNI rats once every day lasting for 14 days. Pain-related behaviors were assessed by using paw withdrawal threshold (PWT) and CatWalk gait parameters. Expression levels of inflammatory mediators and pain-related signaling molecules in the spinal cord were detected using western blotting assay. The results revealed that SLT (30, 100, and 300 mg/kg, p.o.) treatment for SNI rats ameliorated mechanical hypersensitivity in a dose-dependent manner. Application of SLT at the most effective dose of 100 mg/kg to SNI rats not only significantly blocked microglial activation, but also markedly reduced the protein levels of spinal HMGB1, TLR4, MyD88, TRAF6, IL-1ß, IL-6, and TNF-α, along with an enhancement in gait parameters. Furthermore, SLT treatment dramatically inhibited the phosphorylation levels of both IKK and NF-κB p65 but obviously improved both IκB and IL-10 protein expression in the spinal cord of SNI rats. Altogether, these data suggested that SLT could suppress spinal TLR4/NF-κB signaling pathway in SNI rats, which might at least partly contribute to its anti-nociceptive action, indicating that SLT may serveas a potential therapeutic agent for neuropathic pain.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Neuralgia/prevention & control , Pain Threshold/drug effects , Plant Extracts/pharmacology , Sedum , Spinal Cord/drug effects , Toll-Like Receptor 4/metabolism , Analgesics/isolation & purification , Animals , Anti-Inflammatory Agents/isolation & purification , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Neuralgia/metabolism , Neuralgia/physiopathology , Plant Extracts/isolation & purification , Rats, Sprague-Dawley , Sedum/chemistry , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/physiopathology
3.
Yao Xue Xue Bao ; 45(3): 330-3, 2010 Mar.
Article in Chinese | MEDLINE | ID: mdl-21351509

ABSTRACT

Silica gel column chromatography was used for the isolation and purification of the chemical constituents of the pericarp of Illicium macranthum. From dichloromethane-EtOAc (1:1) fraction and EtOAc fraction of the methanol extracts, eleven compounds were identified on the basis of chemical and spectral data. Two new compounds were elucidated to be 6-deoxyneomajucin (1) and 2-oxo-6-deoxyneomajucin (2), along with nine known compounds 6-deoxypseudoanisatin (3), pseudoanisatin (4), anisatin (5), pseudomajucin (6), protocatecheuic acid (7), shikimic acid (8), shikimic acid methylester (9), beta-sitosterol (10) and daucosterol (11). Compounds 1 and 2 are new majucin-type sesquiterpene lactones.


Subject(s)
Drugs, Chinese Herbal/chemistry , Illicium/chemistry , Lactones/isolation & purification , Plants, Medicinal/chemistry , Sesquiterpenes/isolation & purification , Fruit/chemistry , Lactones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Sesquiterpenes/chemistry , Shikimic Acid/chemistry , Shikimic Acid/isolation & purification , Sitosterols/chemistry , Sitosterols/isolation & purification , Spiro Compounds/chemistry , Spiro Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL