Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
BMC Plant Biol ; 24(1): 817, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39210248

ABSTRACT

BACKGROUND: Astragalus cicer L. is a perennial rhizomatous legume forage known for its quality, high biomass yield, and strong tolerance to saline-alkaline soils. Soil salinization is a widespread environmental pressure. To use A. cicer L. more scientifically and environmentally in agriculture and ecosystems, it is highly important to study the molecular response mechanism of A. cicer L. to salt stress. RESULTS: In this study, we used RNA-seq technology and weighted gene coexpression network analysis (WGCNA) were performed. The results showed 4 key modules were closely related to the physiological response of A. cicer. L. to salt stress. The differentially expressed genes (DEGs) of key modules were mapped into the KEGG database, and found that the most abundant pathways were the plant hormone signal transduction pathway and carbon metabolism pathway. The potential regulatory networks of the cytokinin signal transduction pathway, the ethylene signal transduction pathway, and carbon metabolism related pathways were constructed according to the expression pathways of the DEGs. Seven hub genes in the key modules were selected and distributed among these pathways. They may involved in the positive regulation of cytokinin signaling and carbon metabolism in plant leaves, but limited the positive expression of ethylene signaling. Thus endowing the plant with salt tolerance in the early stage of salt stress. CONCLUSIONS: Based on the phenotypic and physiological responses of A. cicer L. to salt stress, this study constructed the gene coexpression network of potential regulation to salt stress in key modules, which provided a new reference for exploring the response mechanism of legumes to abiotic stress.


Subject(s)
Astragalus Plant , Gene Expression Regulation, Plant , Gene Regulatory Networks , Salt Stress , Transcriptome , Salt Stress/genetics , Astragalus Plant/genetics , Astragalus Plant/physiology , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
2.
Front Plant Sci ; 15: 1426838, 2024.
Article in English | MEDLINE | ID: mdl-39193214

ABSTRACT

Flower development is a crucial and complex process in the reproductive stage of plants, which involves the interaction of multiple endogenous signals and environmental factors. However, regulatory mechanism of flower development was unknown in alfalfa (Medicago sativa). In this study, the three stages of flower development of 'M. sativa cv. Gannong No. 5' (G5) and its early flowering and multi flowering mutant (MG5) were comparatively analyzed by transcriptomics. The results showed that compared with late bud stage (S1), 14287 and 8351 differentially expressed genes (DEGs) were identified at early flower stage (S2) in G5 and MG5, and 19941 and 19469 DEGs were identified at late flower stage (S3). Compared with S2, 9574 and 10870 DEGs were identified at S3 in G5 and MG5, respectively. Venn analysis revealed that 547 DEGs were identified among the three comparison groups. KEGG pathway enrichment analysis showed that these genes were involved in the development of alfalfa flowers through redox pathways and plant hormone signaling pathways. Key candidate genes including SnRK2, BSK, GID1, DELLA and CRE1, for regulating the development from buds to mature flowers in alfalfa were screened. In addition, differential expression of transcription factors such as MYB, AP2, bHLH, C2C2, MADS-box, NAC, bZIP, B3 and AUX/IAA also played an important role in this process. The results laid a theoretical foundation for studying the molecular mechanisms of the development process from buds to mature flowers in alfalfa.

3.
Plant Physiol Biochem ; 215: 109018, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137678

ABSTRACT

Polyphenol oxidase (PPO) activity drives walnut fruit browning, but the roles of its only two-family genes, JrPPO1 and JrPPO2, remain unclear. This study explores the spatiotemporal expression and enzymatic characteristics of JrPPO1 and JrPPO2 in walnut. Treatment with the PPO activator CuSO4 and H2O2 accelerated fruit browning and up-regulated JrPPO1/2 expression, whereas treatment with the PPO inhibitor ascorbic acid delayed browning, down-regulating JrPPO1 and up-regulating JrPPO2 expression. Compared to mJrPPO1, mJrPPO2 can exhibited better enzyme activity at higher temperatures (47 °C) and in more acidic environments (pH 4.25). mJrPPO2 exhibited a higher substrate specificity over mJrPPO1, and the preferred substrates are catechol, chlorogenic acid, and epicatechin. Additionally, mJrPPO2 adapted better to low concentration of oxygen (as low as 1.0% O2) and slightly elevated CO2 levels compared to mJrPPO1. Subcellular localization and spatiotemporal expression patterns showed that JrPPO1 is only expressed in green tissues and located in chloroplasts, while JrPPO2 is also located in chloroplasts, partly associated with membranes, and is expressed in both green and non-green tissues. Silencing JrPPO1/2 with virus-induced gene silencing (VIGS) reduced fruit browning, maintained higher total phenols, and decreased MDA production. Notably, silencing JrPPO1 had a greater impact on browning than JrPPO2, indicating JrPPO1's greater contribution to PPO activity and fruit browning in walnut fruits. Consequently, JrPPO1 can be effectively regulated both at the molecular level and by manipulating environmental conditions, to achieve the objective of controlling fruit browning.


Subject(s)
Catechol Oxidase , Fruit , Gene Expression Regulation, Plant , Juglans , Plant Proteins , Plant Proteins/metabolism , Plant Proteins/genetics , Fruit/genetics , Fruit/metabolism , Juglans/genetics , Juglans/metabolism , Catechol Oxidase/metabolism
4.
Oncol Lett ; 28(3): 441, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39099583

ABSTRACT

Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.

5.
BMC Genomics ; 25(1): 781, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134931

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa L.) is the most widely planted legume forage and one of the most economically valuable crops in the world. Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays crucial roles in plant growth, development, and stress responses. To date, there has been no comprehensive bioinformatics investigation conducted on the SHMT genes in M. sativa. RESULTS: Here, we systematically analyzed the phylogenetic relationship, expansion pattern, gene structure, cis-acting elements, and expression profile of the MsSHMT family genes. The result showed that a total of 15 SHMT members were identified from the M. sativa genome database. Phylogenetic analysis demonstrated that the MsSHMTs can be divided into 4 subgroups and conserved with other plant homologues. Gene structure analysis found that the exons of MsSHMTs ranges from 3 to 15. Analysis of cis-acting elements found that each of the MsSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Expression and function analysis revealed that MsSHMTs expressed in all plant tissues. qRT-PCR analysis showed that MsSHMTs induced by ABA, Salt, and drought stresses. CONCLUSIONS: These results provided definite evidence that MsSHMTs might involve in growth, development and adversity responses in M. sativa, which laid a foundation for future functional studies of MsSHMTs.


Subject(s)
Gene Expression Regulation, Plant , Glycine Hydroxymethyltransferase , Medicago sativa , Multigene Family , Phylogeny , Stress, Physiological , Medicago sativa/genetics , Stress, Physiological/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Droughts , Promoter Regions, Genetic
6.
Cell Commun Signal ; 22(1): 359, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992691

ABSTRACT

PURPOSE: Bietti crystalline dystrophy (BCD) is an inherited retinal degeneration disease caused by mutations in the CYP4V2 gene. Currently, there is no clinical therapy approach available for BCD patients. Previous research has suggested that polyunsaturated fatty acids (PUFAs) may play a significant role in the development of BCD, implicating the involvement of ferroptosis in disease pathogenesis. In this work, we aimed to investigate the interplay between ferroptosis and BCD and to detect potential therapeutic strategies for the disease. METHODS: Genetic-edited RPE cell line was first established in this study by CRISPR-Cas9 technology. Cyp4v3 (the homologous gene of human CYP4V2) knock out (KO) mice have also been used. Lipid profiling and transcriptome analysis of retinal pigment epithelium (RPE) cells from Cyp4v3 KO mice have been conducted. Ferroptosis phenotypes have been first investigated in BCD models in vitro and in vivo, including lipid peroxidation, mitochondrial changes, elevated levels of reactive oxygen species (ROS), and altered gene expression. Additionally, an iron chelator, deferiprone (DFP), has been tested in vitro and in vivo to determine its efficacy in suppressing ferroptosis and restoring the BCD phenotype. RESULTS: Cyp4v3 KO mice exhibited progressive retinal degeneration and lipid accumulation, similar to the BCD phenotype, which was exacerbated by a high-fat diet (HFD). Increased levels of PUFAs, such as EPA (C22:5) and AA (C20:4), were observed in the RPE of Cyp4v3 KO mice. Transcriptome analysis of RPE in Cyp4v3 KO mice revealed changes in genes involved in iron homeostasis, particularly an upregulation of NCOA4, which was confirmed by immunofluorescence. Ferroptosis-related characteristics, including mitochondrial defects, lipid peroxidation, ROS accumulation, and upregulation of related genes, were detected in the RPE both in vitro and in vivo. Abnormal accumulation of ferrous iron was also detected. DFP, an iron chelator administration suppressed ferroptosis phenotype in CYP4V2 mutated RPE. Oral administration of DFP also restored the retinal function and morphology in Cyp4v3 KO mice. CONCLUSION: This study represented the first evidence of the substantial role of ferroptosis in the development of BCD. PUFAs resulting from CYP4V2 mutation may serve as substrates for ferroptosis, potentially working in conjunction with NCOA4-regulated iron accumulation, ultimately leading to RPE degeneration. DFP administration, which chelates iron, has demonstrated its ability to reverse BCD phenotype both in vitro and in vivo, suggesting a promising therapeutic approach in the future.


Subject(s)
Corneal Dystrophies, Hereditary , Ferroptosis , Mice, Knockout , Retinal Pigment Epithelium , Animals , Ferroptosis/genetics , Ferroptosis/drug effects , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/pathology , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/drug therapy , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/drug effects , Mice , Reactive Oxygen Species/metabolism , Retinal Diseases/genetics , Retinal Diseases/pathology , Retinal Diseases/metabolism , Retinal Diseases/drug therapy , Cytochrome P450 Family 4/genetics , Mice, Inbred C57BL , Cell Line , Lipid Peroxidation/drug effects
7.
Chemosphere ; 363: 142937, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059638

ABSTRACT

Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Poa , Soil Pollutants , Cadmium/metabolism , Poa/metabolism , Poa/genetics , Soil Pollutants/metabolism , Gene Expression Regulation, Plant/drug effects , Biodegradation, Environmental , Transcription Factors/metabolism , Transcription Factors/genetics , Stress, Physiological , Transcriptome , Plant Proteins/metabolism , Plant Proteins/genetics , Metabolome
8.
BMC Plant Biol ; 24(1): 691, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030468

ABSTRACT

BACKGROUND: Kentucky bluegrass (Poa pratensis L.) panicle development is a coordinated process of cell proliferation and differentiation with distinctive phases and architectural changes that are pivotal to determine seed yield. Cytokinin (CK) is a key factor in determining seed yield that might underpin the second "Green Revolution". However, whether there is a difference between endogenous CK content and seed yields of Kentucky bluegrass, and how CK-related genes are expressed to affect enzyme regulation and downstream seed yield in Kentucky bluegrass remains enigmatic. RESULTS: In order to establish a potential link between CK regulation and seed yield, we dissected and characterized the Kentucky bluegrass young panicle, and determined the changes in nutrients, 6 types of endogenous CKs, and 16 genes involved in biosynthesis, activation, inactivation, re-activation and degradation of CKs during young panicle differentiation of Kentucky bluegrass. We found that high seed yield material had more meristems compared to low seed yield material. Additionally, it was found that seed-setting rate (SSR) and lipase activity at the stage of spikelet and floret primordium differentiation (S3), as well as 1000-grain weight (TGW) and zeatin-riboside (ZR) content at the stages of first bract primordium differentiation (S1) and branch primordium differentiation (S2) showed a significantly positive correlation in the two materials. And zeatin, ZR, dihydrozeatin riboside, isopentenyl adenosine and isopentenyl adenosine riboside contents were higher in seed high yield material than those in seed low yield material at S3 stage. Furthermore, the expressions of PpITP3, PpITP5, PpITP8 and PpLOG1 were positively correlated with seed yield, while the expressions of PpCKX2, PpCKX5 and PpCKX7 were negatively correlated with seed yield in Kentucky bluegrass. CONCLUSIONS: Overall, our study established a relationship between CK and seed yield in Kentucky bluegrass. Perhaps we can increase SSR and TGW by increasing lipase activity and ZR content. Of course, using modern gene editing techniques to manipulate CK related genes such as PpITP3/5/8, PpLOG1 and PpCKX2/5/7, will be a more direct and effective method in Kentucky bluegrass, which requires further trial validation.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Poa , Seeds , Cytokinins/metabolism , Seeds/growth & development , Seeds/genetics , Poa/genetics , Poa/growth & development , Poa/metabolism , Plant Growth Regulators/metabolism , Genes, Plant
9.
Genes (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927750

ABSTRACT

Bromus (Poaceae Bromeae) is a forage grass with high adaptability and ecological and economic value. Here, we sequenced Bromus ciliatus, Bromus benekenii, Bromus riparius, and Bromus rubens chloroplast genomes and compared them with four previously described species. The genome sizes of Bromus species ranged from 136,934 bp (Bromus vulgaris) to 137,189 bp (Bromus ciliates, Bromus biebersteinii), with a typical quadripartite structure. The studied species had 129 genes, consisting of 83 protein-coding, 38 tRNA-coding, and 8 rRNA-coding genes. The highest GC content was found in the inverted repeat (IR) region (43.85-44.15%), followed by the large single-copy (LSC) region (36.25-36.65%) and the small single-copy (SSC) region (32.21-32.46%). There were 33 high-frequency codons, with those ending in A/U accounting for 90.91%. A total of 350 simple sequence repeats (SSRs) were identified, with single-nucleotide repeats being the most common (61.43%). A total of 228 forward and 141 palindromic repeats were identified. No reverse or complementary repeats were detected. The sequence identities of all sequences were very similar, especially with respect to the protein-coding and inverted repeat regions. Seven highly variable regions were detected, which could be used for molecular marker development. The constructed phylogenetic tree indicates that Bromus is a monophyletic taxon closely related to Triticum. This comparative analysis of the chloroplast genome of Bromus provides a scientific basis for species identification and phylogenetic studies.


Subject(s)
Bromus , Genome, Chloroplast , Microsatellite Repeats , Phylogeny , Genome, Chloroplast/genetics , Microsatellite Repeats/genetics , Bromus/genetics , Base Composition/genetics
10.
Ecotoxicol Environ Saf ; 281: 116633, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941659

ABSTRACT

Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.


Subject(s)
Cadmium , Cell Wall , Plant Roots , Polysaccharides , Soil Pollutants , Cell Wall/metabolism , Cadmium/toxicity , Cadmium/metabolism , Plant Roots/metabolism , Polysaccharides/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Biodegradation, Environmental , Poa/drug effects , Poa/metabolism , Biological Transport
11.
J Hazard Mater ; 474: 134727, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824780

ABSTRACT

Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.


Subject(s)
Cadmium , Metabolomics , Plant Roots , Poa , Proteomics , Cadmium/toxicity , Poa/metabolism , Poa/genetics , Poa/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Transcriptome/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/drug effects , Glutathione/metabolism , Gene Expression Profiling
12.
BMC Plant Biol ; 24(1): 27, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172667

ABSTRACT

BACKGROUND: Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS: Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS: Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.


Subject(s)
Arabidopsis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Droughts , Arabidopsis/metabolism , Triticum/genetics , Triticum/metabolism , Drought Resistance , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Water/metabolism
13.
Org Lett ; 25(44): 8043-8047, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37902301

ABSTRACT

Hydrosulfonylation of alkenes with readily available aromatic iodides via a SO2-insetion strategy is presented. The combination of non-noble Ni catalysis with (iPr)3SiH as the final reductant enables the efficient formation of aryl and heteroaryl sulfinate intermediates, which undergo Michael-type additions to electron-deficient alkenes for initiating the hydrosulfonylation process. Moreover, the superiority of this protocol is demonstrated by broad substrate scope and good functional group compatibility.

14.
BMC Genomics ; 24(1): 498, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644390

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa) is the most widely planted legume forage and one of the most economically valuable crops in the world. The periodic changes in its growth and development and abiotic stress determine its yield and economic benefits. Auxin controls many aspects of alfalfa growth by regulating gene expression, including organ differentiation and stress response. Auxin response factors (ARF) are transcription factors that play an essential role in auxin signal transduction and regulate the expression of auxin-responsive genes. However, the function of ARF transcription factors is unclear in autotetraploid-cultivated alfalfa. RESULT: A total of 81 ARF were identified in the alfalfa genome in this study. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, identifying that ARF genes are mainly involved in transcriptional regulation and plant hormone signal transduction pathways. Phylogenetic analysis showed that MsARF was divided into four clades: I, II, III, and IV, each containing 52, 13, 7, and 9 genes, respectively. The promoter region of the MsARF gene contained stress-related elements, such as ABRE, TC-rich repeats, MBS, LTR. Proteins encoded by 50 ARF genes were localized in the nucleus without guide peptides, signal peptides, or transmembrane structures, indicating that most MsARF genes are not secreted or transported but only function in the nucleus. Protein structure analysis revealed that the secondary and tertiary structures of the 81 MsARF genes varied. Chromosomal localization analysis showed 81 MsARF genes were unevenly distributed on 25 chromosomes, with the highest distribution on chromosome 5. Furthermore, 14 segmental duplications and two sets of tandem repeats were identified. Expression analysis indicated that the MsARF was differentially expressed in different tissues and under various abiotic stressors. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression profiles of 23 MsARF genes were specific to abiotic stresses such as drought, salt, high temperature, and low temperature, as well as tissue-specific and closely related to the duration of stress. CONCLUSION: This study identified MsARF in the cultivated alfalfa genome based on the autotetraploid level, which GO, KEGG analysis, phylogenetic analysis, sequence characteristics, and expression pattern analysis further confirmed. Together, these findings provide clues for further investigation of MsARF functional verification and molecular breeding of alfalfa. This study provides a novel approach to systematically identify and characterize ARF transcription factors in autotetraploid cultivated alfalfa, revealing 23 MsARF genes significantly involved in response to various stresses.


Subject(s)
Indoleacetic Acids , Medicago sativa , Medicago sativa/genetics , Phylogeny , Plant Growth Regulators , Stress, Physiological/genetics
15.
Food Chem ; 428: 136797, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37418879

ABSTRACT

Fresh-eating walnuts are perishable and become mildewed during shelf life, limiting their sales span. The effects of chlorine dioxide (ClO2) alone and its combination with walnut green husk extract (WGHE) on shelf stored fresh walnuts were investigated to develop a pollution-free preservative for the produce. The initial development of mildew incidence was delayed by both treatments under 25 °C, whereas, WGHE + ClO2 acted more effectively than ClO2 under 5 °C. The WGHE + ClO2 treatment presented superior effects on improving moisture, soluble sugar and total phenol content, alleviating loss of oil and unsaturated fatty acid and delaying peroxide value increase of walnut kernels at both temperatures. Both treatments inhibited the activities of three lipolytic enzymes and two oxidases at 25 °C and 5 °C, WGHE + ClO2 acted more effectively at 5 °C. The results guide the combined application of WGHE with ClO2 on shelf preservation of fresh walnut.


Subject(s)
Juglans , Antioxidants/pharmacology , Oxides/pharmacology , Plant Extracts/pharmacology , Chlorine
16.
RSC Adv ; 13(22): 15157-15164, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37213340

ABSTRACT

Flexible conductive films based on light-to-heat conversion are promising for the next-generation electronic devices. A flexible waterborne polyurethane composite film (PU/MA) with excellent photothermal conversion performance was obtained by combination of PU and silver nanoparticle decorated MXene (MX/Ag). The silver nanoparticles (AgNPs) uniformly decorated on the MXene surface by γ-ray irradiation induced reduction. Because of the synergistic effect of MXene with outstanding light-to-heat conversion efficiency and the AgNPs with plasmonic effect, the surface temperature of the PU/MA-II (0.4%) composite with lower MXene content increased from room temperature to 60.7 °C at 5 min under 85 mW cm-2 light irradiation. Besides, the tensile strength of PU/MA-II (0.4%) increased from 20.9 MPa (pure PU) to 27.5 MPa. The flexible PU/MA composite film shows great potential in the field of thermal management of flexible wearable electronic devices.

17.
Mol Carcinog ; 62(5): 628-640, 2023 05.
Article in English | MEDLINE | ID: mdl-36727616

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.


Subject(s)
Head and Neck Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Bicarbonates/metabolism , Epithelial-Mesenchymal Transition/genetics , Head and Neck Neoplasms/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Movement/genetics , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism
18.
iScience ; 26(2): 106039, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36761021

ABSTRACT

Three-dimensional (3D) bioprinting has emerged as a class of promising techniques in biomedical research for a wide range of related applications. Specifically, stereolithography apparatus (SLA) and digital light processing (DLP)-based vat-polymerization techniques are highly effective methods of bioprinting, which can be used to produce high-resolution and architecturally sophisticated structures. Our review aims to provide an overview of SLA- and DLP-based 3D bioprinting strategies, starting from factors that affect these bioprinting processes. In addition, we summarize the advances in bioinks used in SLA and DLP, including naturally derived and synthetic bioinks. Finally, the biomedical applications of both SLA- and DLP-based bioprinting are discussed, primarily centered on regenerative medicine and tissue modeling engineering.

19.
J Plant Physiol ; 282: 153919, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706576

ABSTRACT

Kentucky bluegrass (Poa pratensis L.) hyperaccumulates cadmium (Cd) and exhibits a hypertolerance. Thus, it has potential for the phytoremediation of Cd-containing soil. Auxin signaling is involved in the response to Cd stress. However, the mechanisms of auxin-mediated detoxification and Cd translocation in plants remain unclear. This study aimed to investigate the effects of exogenous application of indole-3-acetic acid (IAA) on the Cd translocation, subcellular Cd distribution, chemical forms of Cd, and transcriptional regulation of Kentucky bluegrass. The results showed that the exogenous application of IAA increased the amount of organelle-bound Cd and vacuole-compartmentalized Cd in root cells, reduced the Cd concentration in the leaf tissues (epidermis, mesophyll, and vascular bundle) and root tissues (rhizodermis and cortex) but increased in the stele, and alleviate Cd-induced leaf chlorosis and growth inhibition. The expression of genes associated with Cd transporters (ABCs, ZIPs, NASs, OPTs, and YSLs), phosphatases, oxalate decarboxylases and lignin biosynthesis were significantly regulated by exogenous IAA under Cd stress. A positive regulation of phosphatases and oxalate decarboxylases genes related to an increase in phosphate- and oxalate-bound Cd, as well as a decrease in pectate- and protein-bound Cd and inorganic Cd, thereby contributing to a decrease in Cd phytotoxicity. The significant regulation of Cd transporters associated with decreasing the long-distance translocation of Cd, and the activation of lignin biosynthesis may contribute to the development of root endodermal barriers and increase the deposition of undissolved Cd phosphates and oxalate-bound Cd in the stele. These results revealed the important role of auxin in Cd detoxification and translocation in Kentucky bluegrass and they provide a theoretical basis for the phytoremediation of Cd-containing soil.


Subject(s)
Poa , Poa/metabolism , Cadmium/metabolism , Vacuoles/metabolism , Lignin/metabolism , Indoleacetic Acids/metabolism , Soil , Plant Roots/metabolism
20.
Int. microbiol ; 26(1): 81-90, Ene. 2023. ilus
Article in English | IBECS | ID: ibc-215919

ABSTRACT

There is a need for new anti–Candida albicans (C. albicans) drugs owing to the emergence of drug resistance in recent years. AMP-17, an antimicrobial peptide from Musca domestica (M. domestica), is known to be an effective inhibitor of many fungal pathogens, including C. albicans. In this study, we investigated the potential mechanism underlying the anti–C. albicans effects of AMP-17 using flow cytometry, transmission electron microscopy, fluorescent probes, fluorescence microplate reader, and confocal laser microscopy. Transmission electron microscopy showed that, following AMP-17 treatment, the shape of C. albicans cells became irregular, and vacuoles could be seen in the cytoplasm. Furthermore, AMP-17 treatment resulted in an increase in reactive oxygen species (ROS) levels, depolarization of the mitochondrial membrane potential (MMP), and changes in the cell cycle, leading to the apoptosis and necrosis, which ultimately contributed to the death of C. albicans cells.(AU)


Subject(s)
Humans , Necrosis , Apoptosis , Candida albicans , Flow Cytometry , Microscopy, Electron, Transmission , Fluorescent Dyes , Cell Cycle , Microbiology , Microbiological Techniques
SELECTION OF CITATIONS
SEARCH DETAIL