Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Noise Health ; 26(121): 107-113, 2024.
Article En | MEDLINE | ID: mdl-38904809

OBJECTIVE: To study the value of ward noise management combined with meditation training in stroke rehabilitation patients. METHODS: According to the retrospective analysis method, 150 stroke patients hospitalized in the rehabilitation center of a Tangshan Workers' Hospital from July 2020 to December 2023 were selected as study objects. They were divided into three groups, namely the control group (routine rehabilitation care, n = 50), observation group A (meditation training, n = 50), and observation group B (meditation training and ward noise management, n = 50) according to whether they received ward noise management and meditation training. The general demographic data, Fatigue Severity Scale (FSS), Pittsburgh Sleep Quality Index (PSQI), and the Short Form 36 (SF-36) were collected. Chi-square test and analysis of variance were used to analyse the data. RESULTS: The baseline data of the patients in each group were not statistically significant (P > 0.05). Before treatment, no difference in the FSS, PSQI, SF-36 scores and environmental noise level between the groups (P > 0.05) was observed. After management, the scores of SF-36 in observation group B were higher than those in the control group and observation group A (P < 0.05) except for somatic pain. Other indicators in observation group B were lower than those in the control and observation group A (P < 0.001). CONCLUSIONS: Ward noise management and meditation training can effectively reduce patients' fatigue, significantly reducing ambient noise levels, promoting the improvement of life quality, and improving sleep quality.


Meditation , Noise , Stroke Rehabilitation , Humans , Meditation/methods , Male , Female , Middle Aged , Retrospective Studies , Stroke Rehabilitation/methods , Fatigue/etiology , Fatigue/therapy , Adult , Aged , Quality of Life , Sleep Quality
2.
Front Plant Sci ; 14: 1140462, 2023.
Article En | MEDLINE | ID: mdl-36875596

Introduction: Over the past three decades, the view of nutrient limitation has transferred from single-nutrient limitation to multiple-nutrient limitation. On the Qinghai-Tibetan Plateau (QTP), many nitrogen (N) and phosphorus (P) addition experiments have revealed different N- or P-limited patterns at many alpine grassland sites, whereas it is not clear what the general patterns of N and P limitation across the QTP grasslands. Methods: We performed a meta-analysis, containing 107 publications, to assess how N and P constrained plant biomass and diversity in alpine grasslands across the QTP. We also tested how mean annual precipitation (MAP) and mean annual temperature (MAT) influence N and P limitations. Results: The findings show that plant biomass in QTP grasslands is co-limited by N and P. Single N limitation is stronger than single P limitation, and the combined positive effect of N and P addition is stronger than that of single nutrient additions. The response of biomass to N fertilization rate shows an increase firstly and then declines, and peaks at approximately 25 g N·m-2·year-1. MAP promotes the effect of N limitation on plant aboveground biomass and diminishes the effect of N limitation on belowground biomass. Meanwhile, N and P addition generally decline plant diversity. Moreover, the negative response of plant diversity to N and P co-addition is strongest than that of single nutrient additions. Discussion: Our results highlight that N and P co-limitation is more prevalent than N- or P-limitation alone in alpine grasslands on the QTP. Our findings provide a better understanding of nutrient limitation and management for alpine grasslands on the QTP.

3.
Environ Pollut ; 323: 121295, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36822311

Tropical forests, where the soils are nitrogen (N) rich but phosphorus (P) poor, have a disproportionate influence on global carbon (C) and N cycling. While N deposition substantially alters soil C and N retention in tropical forests, whether P input can alleviate these N-induced effects by regulating soil microbial functions remains unclear. We investigated soil microbial taxonomy and functional traits in response to 10-year independent and interactive effects of N and P additions in a primary and a secondary tropical forest in Hainan Island. In the primary forest, N addition boosted oligotrophic bacteria and phosphatase and enriched genes responsible for C-, P-mineralization, nitrification and denitrification, suggesting aggravated P limitation while N excess. This might stimulate P excavation via organic matter mineralization, and enhance N losses, thereby increasing soil CO2 and N2O emissions by 86% and 110%, respectively. Phosphorus and NP additions elevated C-mining enzymes activity mainly due to intensified C limitation, causing 82% increase in CO2 emission. In secondary forest, P and NP additions reduced phosphatase activity, enriched fungal copiotrophs and increased microbial biomass, suggesting removal of nutrient deficiencies and stimulation of fungal growth. Meanwhile, soil CO2 emission decreased by 25% and N2O emission declined by 52-82% due to alleviated P acquisition from organic matter decomposition and increased microbial C and N immobilization. Overall, N addition accelerates most microbial processes for C and N release in tropical forests. Long-term P addition increases C and N retention via reducing soil CO2 and N2O emissions in the secondary but not primary forest because of strong C limitation to microbial N immobilization. Further, the seasonal and annual variations in CO2 and N2O emissions should be considered in future studies to test the generalization of these findings and predict and model dynamics in greenhouse gas emissions and C and N cycling.


Carbon Dioxide , Soil , Carbon Dioxide/pharmacology , Carbon Dioxide/analysis , Soil Microbiology , Phosphorus , Forests , Nitrogen/pharmacology , Nitrous Oxide/analysis
4.
Sci Total Environ ; 854: 158709, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36126705

Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal community shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by increasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited forest soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to induced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.


Microbiota , Nitrogen , Humans , Nitrogen/analysis , Soil/chemistry , Phosphorus/metabolism , Soil Microbiology , Forests , Fertilization , Phosphoric Monoester Hydrolases , Carbon/metabolism
5.
Sci Total Environ ; 846: 157456, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-35863563

High atmospheric nitrogen (N) deposition and low soil phosphorus (P) availability occur simultaneously in tropical areas, and thus tropical plants need to adapt nutrient-use strategies to maintain growth and survival. Therefore, identifying the adaptative strategies of tropical plants at different successional stages under low soil P availability is indispensable. Here, we separately investigated foliar traits, photosynthetic characteristics, and P fractions of 8 species in the primary and secondary tropical forests after 10 years of N and P fertilization. P addition increased foliar P concentrations and deceased N:P ratio in the primary forest and secondary forest. The foliar photosynthetic rates did not significantly respond to nutrient additions, and the foliar photosynthetic P-use efficiency (PPUE) reduced under the P addition in the primary forest. In contrast, the foliar photosynthetic rates and photosynthetic nitrogen (N)-use efficiency (PNUE) were enhanced with nutrient additions in the secondary forest. The allocations of foliar nucleic acid P and residual P were reduced by P addition in the primary forest, whereas the allocation of metabolic P was enhanced and the allocation of residual P was reduced by P addition in the secondary forest. Additionally, a higher proportion of structural P was found in the primary forest, and a higher proportion of metabolic P was observed in the secondary forest. Interesting, structural equation model analysis revealed that the plants decreased the allocation of foliar nucleic acid P and increased the allocation of structural P in the primary forest, thereby reducing photosynthetic rates. Whereas the plants enhanced photosynthetic rates by promoting PPUE and the allocation of foliar metabolic P in the secondary forest. Our findings highlighted tropical plants at different successional stages can reasonably allocate foliar P to regulate photosynthetic rates and acclimate to low P environments.


Nucleic Acids , Phosphorus , Forests , Nitrogen/analysis , Nucleic Acids/analysis , Phosphorus/analysis , Photosynthesis , Plant Leaves/chemistry , Soil/chemistry , Trees , Tropical Climate
6.
J Plant Res ; 135(1): 41-53, 2022 Jan.
Article En | MEDLINE | ID: mdl-34669087

Above- and belowground biomass allocation is an essential plant functional trait that reflects plant survival strategies and affects belowground carbon pool estimation in grasslands. However, due to the difficulty of distinguishing living and dead roots, estimation of biomass allocation from field-based studies currently show large uncertainties. In addition, the dependence of biomass allocation on plant species, functional type as well as plant density remains poorly addressed. Here, we conducted greenhouse manipulation experiments to study above- and belowground biomass allocation and its density regulation for six common grassland species with different functional types (i.e., C3 vs C4; annuals vs perennials) from temperate China. To explore the density regulation on the biomass allocation, we used five density levels: 25, 100, 225, 400, and 625 plant m-2. We found that mean root to shoot ratio (R/S) values ranged from 0.04 to 0.92 across the six species, much lower than those obtained in previous field studies. We also found much lower R/S values in annuals than in perennials (C. glaucum and S. viridis vs C. squarrosa, L. chinensis, M. sativa and S. grandis) and in C4 plants than in C3 plants (C. squarrosa vs L. chinensis, M. sativa and S. grandis). In addition to S. grandis, plant density had significant effects on the shoot and root biomass fraction and R/S for the other five species. Plant density also affected the allometric relationships between above- and belowground biomass significantly. Our results suggest that R/S values obtained from field investigations may be severely overestimated and that R/S values vary largely across species with different functional types. Our findings provide novel insights into approximating the difficult-to-measure belowground living biomass in grasslands, and highlight that species composition and intraspecific competition will regulate belowground carbon estimation.


Grassland , Plants , Biomass , Carbon , China , Ecosystem , Plant Roots
7.
Sci Total Environ ; 818: 151742, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-34808187

Land-use change can lead to profound changes in the storage of soil organic carbon (SOC) in the tropics. Soil microbial residues make up the majority of persistent SOC pools, yet the impact of land-use change on microbial residue C accumulation in the tropics is not well understood. Here, we investigated how the conversion of tropical primary montane rainforest to secondary forest and the conversions of secondary forest to Prunus salicina plantation and tea plantation, influence the accumulation of soil microbial residue C (indicated by amino sugars). Our results showed that the secondary forest had a higher SOC than that of the primary forest (+63%), while they had no difference in microbial residue C concentration, indicating a relatively slow microbial-derived C accrual during secondary succession. Moreover, the P. salicina plantation and tea plantation had lower SOC than the secondary forest (-53% and -57%, respectively). A decrease in fungal biomass (-51%) resulted in less fungal and total residue C concentrations in the tea plantation than in the secondary forest (-38% and -35%, respectively), indicating microbial-derived C loss following the forest conversion. The change in microbial residue C depended on litter standing crop rather than soil nutrient and root biomass. Litter standing crop affected microbial residue C concentration by regulating fungal biomass and hydrolytic enzyme activities. Taken together, our results highlight that litter-microbe interactions drive microbial residue C accumulation following forest conversions in the tropics.


Carbon , Soil , Carbon/analysis , China , Forests , Soil/chemistry , Soil Microbiology , Tea
8.
J Fungi (Basel) ; 9(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36675875

Nitrogen (N) deposition has changed plants and soil microbes remarkably, which deeply alters the structures and functions of terrestrial ecosystems. However, how forest fungal diversity, community compositions, and their potential functions respond to N deposition is still lacking in exploration at a large scale. In this study, we conducted a short-term (4-5 years) experiment of artificial N addition to simulated N deposition in five typical forest ecosystems across eastern China, which includes tropical montane rainforest, subtropical evergreen broadleaved forest, temperate deciduous broadleaved forest, temperate broadleaved and conifer mixed forest, and boreal forest along a latitudinal gradient from tropical to cold temperature zones. Fungal compositions were identified using high-throughput sequencing at the topsoil layer. The results showed that fungal diversity and fungal community compositions among forests varied apparently for both unfertilized and fertilized soils. Generally, soil fungal diversity, communities, and their potential functions responded sluggishly to short-term N addition, whereas the fungal Shannon index was increased in the tropical forest. In addition, environmental heterogeneity explained most of the variation among fungal communities along the latitudinal gradient. Specifically, soil C: N ratio and soil water content were the most important factors driving fungal diversity, whereas mean annual temperature and microbial nutrient limitation mainly shaped fungal community structure and functional compositions. Topsoil fungal communities in eastern forest ecosystems in China were more sensitive to environmental heterogeneity rather than short-term N addition. Our study further emphasized the importance of simultaneously evaluating soil fungal communities in different forest types in response to atmospheric N deposition.

9.
Ecology ; 102(7): e03370, 2021 07.
Article En | MEDLINE | ID: mdl-33961286

Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.


Ecosystem , Food Chain , Animals , Fresh Water , Phytoplankton , Zooplankton
10.
Environ Pollut ; 268(Pt B): 115941, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33162211

Atmospheric nitrogen (N) deposition has a significant influence on soil organic carbon (SOC) accumulation in forest ecosystems. Microbial residues, as by-products of microbial anabolism, account for a significant fraction of soil C pools. However, how N deposition affects the accumulation of soil microbial residues in different forest biomes remains unclear. Here, we investigated the effects of six/seven-year N additions on microbial residues (amino sugar biomarkers) in eight forests from tropical to boreal zone in eastern China. Our results showed a minor change in the soil microbial residue concentrations but a significant change in the contribution of microbial residue-C to SOC after N addition. The contribution of fungal residue-C to SOC decreased under low N addition (50 kg N ha-1 yr-1) in the tropical secondary forest (-19%), but increased under high N addition (100 kg N ha-1 yr-1) in the temperate Korean pine mixed forest (+21%). The contribution of bacterial residue-C to SOC increased under the high N addition in the subtropical Castanopsis carlesii forest (+26%) and under the low N addition in the temperate birch forest (+38%), respectively. The responses of microbial residue-C in SOC to N addition depended on the changes in soil total N concentration and fungi to bacteria ratio under N addition and climate. Taken together, these findings provide the experimental evidence that N addition diversely regulates the formation and composition of microbial-derived C in SOC in forest ecosystems.


Carbon , Soil , Carbon/analysis , China , Ecosystem , Forests , Nitrogen/analysis , Soil Microbiology
11.
Natl Sci Rev ; 7(1): 132-140, 2020 Jan.
Article En | MEDLINE | ID: mdl-34692027

Lakes have played a critical role in providing water and ecosystem services for people and other organisms in China for millennia. However, accelerating climate change and economic boom have resulted in unprecedented changes in these valuable lakes. Using Landsat images covering the entity of the country, we explored the changes in China's lakes and the associated driving forces over the last 30 years (i.e. mid-1980s to 2015). We discovered that China's lakes have changed with divergent regional trends: in the sparsely populated Tibetan Plateau, lakes are abundant and the lake area has increased dramatically from 38 596 to 46 831 km2 (i.e. increased by 8235 km2, or 21.3%), whereas, in the densely populated northern and eastern regions, lakes are relatively scarce and the lake area has decreased from 36 659 to 33 657 km2 (i.e. decreased by 3002 km2, or 8.2%). In particular, severe lake decreases occurred in the Mongolia-Xinjiang Plateau and the Eastern Plain (-2151 km2). Statistical analyses indicated that climate was the most important factor controlling lake changes in the Tibetan Plateau, the Yun-Gui Plateau and the Northeast Plain. However, the strength of climatic control on lake changes was low in the Eastern Plain and the Mongolia-Xinjiang Plateau, where human activities, e.g. impoldering, irrigation and mining, have caused serious impacts on lakes. Further lake changes will exacerbate regional imbalances between lake resources and population distribution, and thus may increase the risk of water-resource crises in China.

12.
Sci China Life Sci ; 62(8): 1047-1057, 2019 Aug.
Article En | MEDLINE | ID: mdl-31290101

Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g-1, 0.27 to 2.17 mg g-1, and 10.20 to 35.40, respectively. Approximately 1/3-1/2 of the families (22-35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307-0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.


Nitrogen/metabolism , Phosphorus/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plants/metabolism , Databases, Factual , Ecosystem , Models, Statistical , Photosynthesis , Phylogeny , Soil , Stereoisomerism , Temperature
13.
Ecology ; 100(9): e02812, 2019 09.
Article En | MEDLINE | ID: mdl-31291467

Nitrogen (N) and phosphorus (P) are essential components of the basic cell structure of plants. In particular, leaf N and P concentrations and their stoichiometric relationship largely determine the photosynthesis, growth, reproduction, and ecophysiological processes of plants. As important leaf functional traits, leaf N and P concentrations and their stoichiometric relationship play vital roles in indicating plant nutrient-use strategies and their evolution in terrestrial ecosystems. They also influence physiological and ecological processes in leaves (e.g., growth rate and energy metabolism) and productivity (e.g., net primary production and net ecosystem production) at ecosystem level. However, the lack of a comprehensive data set containing paired leaf N and P concentration records has distinctly limited research on nutrient stoichiometry and leaf functional traits. Here, we provide a global database of paired records of leaf N and P concentrations. A total of 11,354 individual records were acquired spanning 1,291 sites worldwide, including 201 families, 1,265 genera, and 3,227 species. The records span a latitudinal range of 45.28 °S to 68.35 °N and a longitudinal range of 155.5 °W to 168.0 °E. The variables provided for each individual record are (1) geographical location (longitude, latitude, and altitude); (2) matched leaf N and P concentrations and N:P ratio; (3) taxonomic information (family, genera, and species); (4) life form (angiosperm/gymnosperm, monocotyledonous/dicotyledonous and woody plants/herbaceous plants; note that woody plants were further divided into coniferous, deciduous broad-leaved, and evergreen broad-leaved woody species and that herbaceous plants were further divided into annual and perennial species); (5) mean annual temperature (MAT) and mean annual precipitation (MAP); and (6) soil N and P concentrations and pH value in some records. To date, this database is the world's largest database of paired leaf N and P concentrations, which contains matched information of geographical location, environmental factors, and taxa. We believe that the database will play a fundamental and crucial part of ecological stoichiometric studies. There are no copyright restrictions. When using this database, we kindly request that you cite this article, respecting all the authors' hard work during sample collection and data compilation.

14.
Ann Bot ; 123(3): 441-450, 2019 02 15.
Article En | MEDLINE | ID: mdl-30265279

BACKGROUND AND AIMS: Plant elemental composition is of fundamental importance for plant growth and metabolic functions. However, knowledge of how multi-elemental stoichiometry responds to varying nitrogen (N) and phosphorus (P) availabilities remains limited. METHODS: We conducted experimental manipulations with nine repeat experiments to investigate the effects of N and P supply on the concentrations and variability of six elements, carbon (C), N, P, potassium (K), calcium (Ca) and magnesium (Mg), in leaves of Arabidopsis thaliana. KEY RESULTS: N supply increased the concentrations of N, K and Mg, decreased the concentration of P, but exerted little influence on the concentrations of C and Ca in green leaves. P supply increased the concentrations of P and Ca, decreased the concentration of C, initially increased and then decreased the concentration of K, but showed little influence on the concentrations of N and Mg in green leaves. Multivariate patterns among the concentrations of these six elements in green leaves was influenced by the type of nutrient supply (i.e. N or P). Elemental variability decreased with increasing elemental concentrations in green leaves at the intraspecific level, supporting the Stability of Limiting Elements Hypothesis that was originally proposed from a meta-analysis of pooled data across species or communities. Compared with green leaves, the senesced leaves showed greater variability in C, N, P, K and Mg concentrations but lower variability in Ca concentration. CONCLUSIONS: N and P supplies exerted differential influences on the concentrations of C, N, P, K, Ca and Mg in green leaves. The specific C content should be considered when assessing C cycling under global nutrient changes. Stage-dependent patterns of leaf stoichiometric homeostasis differed among elements with various chemical characteristics. These findings can help to improve our understanding of plant eco-physiological responses and acclimation under global nutrient changes from the stoichiometric perspective of multiple elements.


Arabidopsis/metabolism , Minerals/metabolism , Nitrogen/metabolism , Nutrients/metabolism , Phosphorus/metabolism , Plant Leaves/metabolism
15.
Environ Pollut ; 243(Pt A): 75-86, 2018 Dec.
Article En | MEDLINE | ID: mdl-30172126

China has been experiencing a rapid increase in nitrogen (N) deposition due to intensified anthropogenic N emissions since the late 1970s. By synthesizing experimental and observational data taken from literature, we reviewed the responses of China's forests to increasing N deposition over time, with a focus on soil biogeochemical properties and acidification, plant nutrient stoichiometry, understory biodiversity, forest growth, and carbon (C) sequestration. Nitrogen deposition generally increased soil N availability and soil N leaching and decreased soil pH in China's forests. Consequently, microbial biomass C and microbial biomass N were both decreased, especially in subtropical forests. Nitrogen deposition increased the leaf N concentration and phosphorus resorption efficiency, which might induce nutrient imbalances in the forest ecosystems. Although experimental N addition might not affect plant species richness in the overstorey, it did significantly alter species composition of understory plants. Increased N stimulated tree growth in temperate forests, but this effect was weak in subtropical and tropical forests. Soil respiration in temperate forests was non-linearly responsive to N additions, with an increase at dosages of <60 kg N ha-1 yr-1 and a decrease at dosages of >60 kg N ha-1 yr-1. However, it was consistently decreased by increased N inputs in subtropical and tropical forests. In light of future trends in the composition (e.g., reduced N vs. oxidized N) and the loads of N deposition in China, further research on the effects of N deposition on forest ecosystems will have critical implications for the management strategies of China's forests.


Ecosystem , Forests , Nitrogen/metabolism , Plant Development , Soil/chemistry , Trees/metabolism , Carbon/analysis , China , Microbiota/drug effects , Nitrogen/analysis , Nitrogen/pharmacology , Phosphorus/analysis , Plant Development/drug effects , Soil Microbiology , Trees/chemistry , Trees/drug effects
16.
Sci Total Environ ; 618: 1064-1070, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29126640

Rapid increase of global nitrogen (N) deposition has greatly altered carbon cycles and functioning of forest ecosystems. Previous studies have focused on changes in carbon dynamics of temperate and subtropical forests through N enrichment experiments; however, the effects of N deposition on tree growth remain inconsistent, especially in tropical forests. Here, we conducted a five-year N addition experiment (0 and 50kgNha-1yr-1) in a tropical montane rain forest in Hainan Island, China, to explore the effects of enhanced N deposition on growth of trees. We also set phosphorus (P) treatment (50kgPha-1yr-1) and N+P treatment (50kgNha-1yr-1+50kgPha-1yr-1) to examine potential P limitation driven by N deposition. Our results showed that N addition has not significantly influenced tree growth, while P addition significantly increased the relative growth rate of small (diameter at breast height, DBH≤10cm) and medium (10

17.
Sci Total Environ ; 607-608: 1367-1375, 2017 Dec 31.
Article En | MEDLINE | ID: mdl-28738512

Increasing nitrogen (N) deposition has aroused large concerns because of its potential negative effects on forest ecosystems. Although microorganisms play a vital role in ecosystem carbon (C) and nutrient cycling, the effect of N deposition on soil microbiota still remains unclear. In this study, we investigated the responses of microbial biomass C (MBC) and N (MBN) and microbial community composition to 4-5years of experimentally simulated N deposition in temperate needle-leaf forests and subtropical evergreen broadleaf forests in eastern China, using chloroform fumigation extraction and phospholipid fatty acid (PLFA) methods. We found idiosyncratic effects of N addition on microbial biomass in these two types of forest ecosystems. In the subtropical forests, N addition showed a significant negative effect on microbial biomass and community composition, while the effect of N addition was not significant in the temperate forests. The N addition decreased MBC, MBN, arbuscular mycorrhizal fungi, and the F/B ratio (ratio of fungi to bacteria biomass) in the subtropical forests, likely due to a decreased soil pH and changes in the plant community composition. These results showed that microbial biomass and community composition in subtropical forests, compared with the temperate forests, were sensitive to N deposition. Our findings suggest that N deposition may have negative influence on soil microorganisms and potentially alter carbon and nutrient cycling in subtropical forests, rather than in temperate forests.


Carbon Cycle , Forests , Nitrogen/chemistry , Soil Microbiology , Soil/chemistry , Biomass , China
18.
Sci Total Environ ; 607-608: 806-815, 2017 Dec 31.
Article En | MEDLINE | ID: mdl-28711842

Soil extracellular enzymes play a key role in mediating a range of forest ecosystem functions (i.e., carbon and nutrients cycling and biological productivity), particularly in the face of atmospheric N deposition that has been increasing at an unprecedented rate globally. However, most studies have focused only on surface soils in a single ecosystem. In this study, we aimed to determine whether the effect of simulated N deposition on the activities and ratios of soil enzymes changes with soil depth across six forest ecosystems in eastern China. We collected soil samples from three blocks×four soil depths (0-10cm, 10-20cm, 20-40cm and 40-60cm)×three N treatment levels (control, 50 and 100kgNha-1year-1) at each of the six forest ecosystems. We measured the activities of seven soil enzymes involved in C-, N- and P-cycling. We found that 4-5years of N addition had no significant effect on the activities and ratios of these enzymes in most cases. The interactions among N addition, site and soil depth on soil enzyme activities were not significant, except that acid phosphatase activity showed site-specific responses to N addition. Our findings suggest that the activities of soil enzymes involved in C- and N-cycling generally do not track simulated N deposition in the six forest ecosystems. Further work on plant, soil and microbial characteristics is needed to better understand the mechanisms of soil enzyme activities in response to N deposition in forest ecosystems.


Enzymes/metabolism , Forests , Nitrogen/chemistry , Soil Microbiology , Soil/chemistry , Carbon/chemistry , Carbon Cycle , China , Nitrogen Cycle , Trees
...