Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Differentiation ; 138: 100789, 2024.
Article in English | MEDLINE | ID: mdl-38896972

ABSTRACT

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Osteoclasts , Osteoprotegerin , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , Animals , Adenosine Triphosphate/metabolism , Mice , Connexin 43/metabolism , Connexin 43/genetics , Cell Fusion , CD47 Antigen/metabolism , CD47 Antigen/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Signal Transduction , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Nerve Tissue Proteins
2.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847030

ABSTRACT

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Subject(s)
Age Determination by Skeleton , Deep Learning , Imaging, Three-Dimensional , Ischium , Tomography, X-Ray Computed , Humans , Male , Female , Ischium/diagnostic imaging , Adult , Middle Aged , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , China , Retrospective Studies , Age Determination by Skeleton/methods , Aged , Young Adult , Aged, 80 and over , Reproducibility of Results
3.
Front Plant Sci ; 15: 1332788, 2024.
Article in English | MEDLINE | ID: mdl-38699539

ABSTRACT

For a long time, human activities have been prohibited in ecologically protected areas in the Ebinur Lake Wetland National Nature Reserve (ELWNNR). The implementation of total closure is one of the main methods for ecological protection. For arid zones, there is a lack of in-depth research on whether this measure contributes to ecological restoration in the reserve. The Normalized Difference Vegetation Index (NDVI) is considered to be the best indicator for ecological monitoring and has a key role to play in assessing the ecological impacts of total closure. In this study, we used Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data to select optimal data and utilized Sen slope estimation, Mann-Kendall statistical tests, and the geographical detector model to quantitatively analyze the normalized difference vegetation index (NDVI) dynamics and its driving factors. Results were as follows: (1) The vegetation distribution of the Ebinur Lake Wetland National Nature Reserve (ELWNNR) had obvious spatial heterogeneity, showing low distribution in the middle and high distribution in the surroundings. The correlation coefficients of Landsat-8 and MODIS, Sentinel-2 and MODIS, and Sentinel-2 and Landsat-8 were 0.952, 0.842, and 0.861, respectively. The NDVI calculated from MODIS remote sensing data was higher than the value calculated by Landsat-8 and Sentinel-2 remote sensing images, and Landsat-8 remote sensing data were the most suitable data. (2) NDVI indicated more degraded areas on the whole, but the ecological recovery was obvious in the localized areas where anthropogenic closure was implemented. The ecological environment change was the result of the joint action of man and nature. Man-made intervention will change the local ecological environment, but the overall ecological environment change was still dominated by natural environmental factors. (3) Factors affecting the distribution of NDVI in descending order were as follows: precipitation > evapotranspiration > land use type > elevation > vegetation type > soil type > soil erosion > slope > temperature > slope direction. Precipitation was the main driver of vegetation change in ELWNNR. The synergistic effect of the factors showed two-factor enhancement and nonlinear enhancement, and the combined effect of the driving factors would increase the influence on NDVI.

4.
J Craniofac Surg ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814063

ABSTRACT

BACKGROUND: Wide-neck aneurysm embolism is a technically demanding procedure. Stent device deployment is challenging intraoperatively, especially in parent arteries with acute angles. CASE DESCRIPTION: The authors describe the case of a 74-year female with an unruptured right posterior inferior cerebellar artery aneurysm. The acute angle of the arteries proximal to the posterior inferior cerebellar artery complicated the condition, and the distal end of the guidewire failed to enter the posterior inferior cerebellar artery despite several maneuvers. The wide neck of the aneurysm was located in the posterior inferior cerebellar artery, so a stent was needed. The stent was deployed from the left vertebral artery retrograde to the right vertebral artery. CONCLUSIONS: The authors report the successful application of a rare strategy, the radial approach combined with a contralateral vertebral retrograde approach, for stent deployment.

5.
Poult Sci ; 103(6): 103706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631227

ABSTRACT

Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.


Subject(s)
Animal Feed , Chickens , Osteogenesis , Osteoprotegerin , Proanthocyanidins , RANK Ligand , Animals , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , RANK Ligand/metabolism , Proanthocyanidins/pharmacology , Proanthocyanidins/administration & dosage , Chickens/growth & development , Osteogenesis/drug effects , Chick Embryo , Animal Feed/analysis , Osteoclasts/drug effects , Diet/veterinary , Random Allocation , Dietary Supplements/analysis , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug
6.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608882

ABSTRACT

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Subject(s)
Cadmium , Ducks , Microplastics , Oxidative Stress , Pancreas , Animals , Cadmium/toxicity , Oxidative Stress/drug effects , Pancreas/drug effects , Microplastics/toxicity , Fibrosis , Polyvinyl Chloride/toxicity , Water Pollutants, Chemical/toxicity
7.
Chin Neurosurg J ; 10(1): 5, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326922

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) is a rare and complex cerebrovascular disorder characterized by the progressive narrowing of the internal carotid arteries and the formation of compensatory collateral vessels. The etiology of MMD remains enigmatic, making diagnosis and management challenging. The MOYAOMICS project was initiated to investigate the molecular underpinnings of MMD and explore potential diagnostic and therapeutic strategies. METHODS: The MOYAOMICS project employs a multidisciplinary approach, integrating various omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, to comprehensively examine the molecular signatures associated with MMD pathogenesis. Additionally, we will investigate the potential influence of gut microbiota and brain-gut peptides on MMD development, assessing their suitability as targets for therapeutic strategies and dietary interventions. Radiomics, a specialized field in medical imaging, is utilized to analyze neuroimaging data for early detection and characterization of MMD-related brain changes. Deep learning algorithms are employed to differentiate MMD from other conditions, automating the diagnostic process. We also employ single-cellomics and mass cytometry to precisely study cellular heterogeneity in peripheral blood samples from MMD patients. CONCLUSIONS: The MOYAOMICS project represents a significant step toward comprehending MMD's molecular underpinnings. This multidisciplinary approach has the potential to revolutionize early diagnosis, patient stratification, and the development of targeted therapies for MMD. The identification of blood-based biomarkers and the integration of multiple omics data are critical for improving the clinical management of MMD and enhancing patient outcomes for this complex disease.

8.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38247538

ABSTRACT

Cadmium (Cd) is a major health concern globally and can accumulate and cause damage in the liver for which there is no approved treatment. Baicalin and N-acetylcysteine (NAC) have been found to have protective effects against a variety of liver injuries, but it is not clear whether their combined use is effective in preventing and treating Cd-induced lipid accumulation. The study found that Cd increased the production of mitochondrial reactive oxygen species (mROS) and elevated the level of chaperone-mediated autophagy (CMA). Interestingly, mROS-mediated CMA exacerbates the Cd-induced inhibition of lipophagy. Baicalin and NAC counteracted inhibition of lipophagy by attenuating Cd-induced CMA, suggesting an interplay between CMA elevation, mitochondrial destruction, and mROS formation. Maintaining the stability of mitochondrial structure and function is essential for alleviating Cd-induced lipid accumulation in the liver. Choline is an essential component of the mitochondrial membrane and is responsible for maintaining its structure and function. Mitochondrial transcriptional factor A (TFAM) is involved in mitochondrial DNA transcriptional activation and replication. Our study revealed that the combination of baicalin and NAC can regulate choline metabolism through TFAM and thereby maintain mitochondrial structure and functionality. In summary, the combination of baicalin and NAC plays a more beneficial role in alleviating Cd-induced lipid accumulation than the drug alone, and the combination of baicalin and NAC can stabilize mitochondrial structure and function and inhibit mROS-mediated CMA through TFAM-choline, thereby promoting lipophagy to alleviate Cd-induced lipid accumulation.

9.
Phytomedicine ; 125: 155337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241915

ABSTRACT

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Subject(s)
Acetylcysteine , Cadmium , Flavonoids , Mice , Animals , Acetylcysteine/pharmacology , Cadmium/toxicity , Mice, Inbred C57BL , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver , Inflammation/metabolism , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Lactic Acid/metabolism , Lactic Acid/pharmacology , Lactic Acid/therapeutic use
10.
J Hazard Mater ; 465: 133151, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38113736

ABSTRACT

Cadmium (Cd) is an important environmental pollutant. Herein, we discovered a new way of lipid accumulation, where lipid droplets can be transferred across cells. In this study, mice and AML12 cells were used to establish models of Cd poisoning. After Cd treatment, the level of TFAM was reduced, thereby regulating the reconstitution of the cytosolic actin filament network. MYH9 is a myosin involved in cell polarization, migration, and movement of helper organelles. Rab18 is a member of the Rab GTPase family, which localizes to lipid droplets and regulates lipid drop dynamics. In this study, we found that Cd increases the interaction between MYH9 and Rab18. However, TFAM overexpression alleviated the increase in Cd-induced interaction between MYH9 and Rab18, thereby reducing the transfer of intercellular lipid droplets and the accumulation of intracellular lipids. Through a co-culture system, we found that the transferred lipid droplets can act as a signal to form an inflammatory storm-like effect, and ACSL4 can act as an effector to transfer lipid droplets and promote lipid accumulation in surrounding cells. These results suggest that TFAM can be used as a new therapeutic target for Cd-induced lipid accumulation in the liver.


Subject(s)
Cadmium , Non-alcoholic Fatty Liver Disease , Mice , Animals , Cadmium/metabolism , Lipid Droplets/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , rab GTP-Binding Proteins/metabolism , Lipids , Lipid Metabolism , Liver/metabolism
11.
Ecotoxicol Environ Saf ; 267: 115674, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37952295

ABSTRACT

The incidence of diabetes mellitus (DM) is gradually increasing, making it a widespread global health concern. Cadmium (Cd) is a common toxic heavy metal in the environment, and cadmium exposure may be associated with diabetic nephropathy (DN). However, the mechanism of Cd-induced DN remains unclear. In this study, we aimed to determine the effect of cadmium on diabetic kidney injury and the underlying mechanism in diabetic rats and a renal tubular epithelial cell line (NRK-52E cells). Our results could provide novel insights on the nephrotoxic mechanism of cadmium. HE, PAS, and Masson staining were used to observe pathological renal injury. COL-I, COL-IV, CTSB, and CTSD protein levels were detected by immunohistochemistry and western blotting. Immunofluorescence was used to detect the fluorescence intensity of p62 and LC3 proteins in kidney tissue. TEM was used to observe the ultrastructure of mitochondria and number of autophagosomes. After cadmium exposure, DM rats showed a dramatic decrease in body weight compared to the unexposed DM group. Relative kidney weight showed a contrasting trend after cadmium exposure. Urinary microalbumin/creatinine significantly increased in normal and DM rats after cadmium exposure. However, the trend was clearer in the DM groups than in the control groups. Endogenous creatinine clearance exhibited a contrasting trend. After cadmium exposure in DM rats, MDA content significantly increased and GSH, CAT, SOD, and GSH-PX activation reduced compared to normal controls. Pathological damage was more pronounced, and the expression of autophagy related proteins and apoptosis and fibrosis proteins was significantly higher in vivo and vitro in the cadmium-exposed groups than in unexposed controls. Further, lysosomal protein levels were lower, and ROS content and autophagosome count significantly higher in the cadmium exposed groups compared to the unexposed controls. Therefore, Cadmium exposure aggravates diabetic kidney injury via autophagy inhibition.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Rats , Cadmium/toxicity , Creatinine , Autophagy , Kidney
12.
Heliyon ; 9(10): e21052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37876489

ABSTRACT

Cadmium (Cd) is a significant environmental contaminant known for its potential hepatotoxic effects. However, the precise mechanisms underlying Cd-induced hepatotoxicity have yet to be fully understood. Therefore, the purpose of this study was to investigate the dynamic role of connexin 43 (Cx43) in response to Cd exposure, particularly its impact on gap junctional intercellular communication (GJIC) and autophagy in hepatocytes. To establish an in vitro model of Cd-induced hepatocyte injury, the Buffalo rat liver 3A cell line (BRL3A) was utilized.In order to elucidate the mechanism by which Cx43 influences Cd-induced hepatocyte toxic injury, inhibitors of Cx43 (Dynasore) and P-Cx43 (Ro318220) were employed in the model. The findings revealed that inhibiting Cx43 and its phosphorylation further compromised GJIC function, exacerbating the impairment, while also intensifying the blockage of autophagic flux. To gain further insight into the role of Cx43, siRNA was utilized to knock down Cx43 expression, yielding similar results. The down-regulation of Cx43 expression was found to worsen the morphological damage induced by cadmium exposure, diminish the cell proliferation capacity of BRL3A cells, and exacerbate the disruption of GJIC and autophagic flow caused by Cd.These findings suggest that Cx43 may serve as a potential therapeutic target for the treatment of liver damage resulting from Cd exposure. By targeting Cx43, it may be possible to mitigate the adverse effects of Cd on hepatocytes.

13.
Cell Mol Biol Lett ; 28(1): 87, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37884867

ABSTRACT

Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Cadmium , Lipid Metabolism , Mitochondria/metabolism , Hepatocytes/metabolism , Lipids , Liver
14.
Chemosphere ; 344: 140372, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802476

ABSTRACT

Microplastics (MPs) and cadmium (Cd) are important environmental pollutants, that damage the liver. However, the effect and mechanism of combined Cd and MPs exposure on liver fibrosis are still largely unknown. In this study investigated, Cd + MPs exposure increased superoxide anion production and promoted extracellular ATP release compared with exposure to Cd or MPs individually. Cd + MPs increased inflammatory cell infiltration, activated the P2X7-NLRP3 signaling pathway, and promoted inflammatory factor release. Cd + MPs aggravated Cd- or MPs-induced liver fibrosis and induced liver inflammation. In AML12/HSC-T6 cell in vitro poisoning model, exposure of AML12 cells to Cd + MPs increased the opening of connexin hemichannels and promoted extracellular ATP release. Treatment of HSC-T6 cells with the supernatant of AML12 cells exposed to Cd + MPs significantly promoted HSC-T6 cell activation. Treatment of HSC-T6 cells with different concentrations of ATP produced similar results. TAT-Gap19TFA, an inhibitor of connexin hemichannels, significantly inhibited the ATP release and activation of Cd + MPs-treated HSC-T6 cells. Finally, the expression of the ATP receptor P2X7 was silenced in HSC-T6 cells, which significantly inhibited their activation. In conclusion, exposure to Cd + MPs promoted liver fibrosis through the ATP-P2X7 pathway and synergistically affected liver inflammation and fibrosis.


Subject(s)
Cadmium , Microplastics , Humans , Cadmium/toxicity , Plastics , Liver Cirrhosis/chemically induced , Connexins , Adenosine Triphosphate
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1246-1252, 2023 Oct 15.
Article in Chinese | MEDLINE | ID: mdl-37848320

ABSTRACT

Objective: To investigate the effectiveness of sagittal top compression reduction technique in the treatment of thoracolumbar vertebral fractures. Methods: A retrospective analysis was conducted on the clinical data of 59 patients with thoracolumbar vertebral fractures who met the selection criteria and were admitted between November 2018 and January 2022. Among them, 34 patients were treated with sagittal top compression reduction technique (top pressure group), and 25 patients were treated with traditional reduction technique (traditional group). There was no significant difference in baseline data between the two groups ( P>0.05), including gender, age, fracture segment, cause of injury, AO classification of thoracolumbar vertebral fractures, thoracolumbar injury classification and severity (TLICS) score, American Spinal Injury Association (ASIA) grading, surgical approach, preoperative vertebral body index, height ratio of the anterior margin of injured vertebra, injured vertebra angle, segmental kyphosis angle, visual analogue scale (VAS) score, and Oswestry disability index (ODI). The operation time, intraoperative blood loss, and incidence of complications between the two groups were recorded and compared. After operation, VAS score and ODI were used to evaluate effectiveness, and X-ray and CT examinations were performed to measure imaging indicators such as vertebral body index, height ratio of the anterior margin of injured vertebra, injured vertebra angle, and segmental kyphosis angle. Results: There was no significant difference in operation time and intraoperative blood loss between the two groups ( P>0.05). No complication such as dural sac, nerve root, or vascular injury was found during operation, and all incisions healed by first intention. Patients in both groups were followed up 6-48 months, with an average of 20.6 months. No loosening, breakage, or failure of internal fixation occurred during follow-up. The imaging indicators, VAS score, and ODI of the two groups significantly improved at 1 week and last follow-up when compared to preoperative ones ( P<0.05). At last follow-up, the VAS score and ODI further significantly improved when compared to 1 week after operation ( P<0.05). At 1 week after operation and last follow-up, the vertebral body index, segmental kyphosis angle, injured vertebra angle, and ODI in the top pressure group were significantly better than those in the traditional group ( P<0.05). There was no significant difference in VAS score and height ratio of the anterior margin of injured vertebra between the two groups at 1 week after operation ( P>0.05), but the two indicators in the top pressure group were significantly better than those in the traditional group at last follow-up ( P<0.05). Conclusion: The treatment of thoracolumbar vertebral fractures with sagittal top compression reduction technique can significantly improve the quality of vertebral reduction, and is superior to traditional reduction techniques in relieving pain and improving spinal function.


Subject(s)
Fractures, Compression , Kyphosis , Pedicle Screws , Spinal Fractures , Humans , Thoracic Vertebrae/surgery , Thoracic Vertebrae/injuries , Lumbar Vertebrae/surgery , Lumbar Vertebrae/injuries , Retrospective Studies , Blood Loss, Surgical , Treatment Outcome , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Fracture Fixation, Internal , Fractures, Compression/diagnostic imaging , Fractures, Compression/surgery
16.
Mol Med Rep ; 28(5)2023 Nov.
Article in English | MEDLINE | ID: mdl-37772370

ABSTRACT

Melatonin (MLT) is a biologically active indoleamine involved in regulating various biological rhythms, which is deficient in individuals with Type 2 diabetes. The present study examined the effects of MLT on diabetic neuropathy (DN). Diabetic rats received MLT treatment for 12 weeks, after which changes in kidney histology, oxidative damage, mitochondrial morphology and autophagy were measured. The glucose tolerance­ and isoflurane tolerance­area under the curve (AUC) values and the relative renal weight index (RI) in the diabetes mellitus (DM) group of rats were significantly higher compared with those in the control group. A significant increase in malondialdehyde (MDA) content, and decreases in the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH­Px) and GSH were demonstrated in the kidneys of DM rats compared with those in the control rats. Histological staining of DM rat kidney tissue with hematoxylin and eosin, Masson's trichome and Periodic acid­Schiff demonstrated glomerular and tubule lesions, and an increase in collagen compared with control rats. Protein expression levels of LC3II, P62, collagen IV (COL­IV) and α­SMA were increased in DM rats and HG­induced NRK­52E cells compared with those in the control groups. Phosphorylation of AMPK was reduced, whereas phosphorylation of PI3K, Akt and mTOR were increased in vivo and in vitro. Notably, MLT treatment significantly reduced glucose tolerance­AUC and RI, decreased MDA content, and increased SOD, CAT, GSH­Px and GSH activity. Glomerular and tubule lesions improved, collagen was decreased and mitochondrial damage was alleviated by MLT treatment. MLT treatment also decreased the protein expression levels of LC3II, P62 and COL­IV, whereas the phosphorylation of AMPK was significantly increased, which inhibited the phosphorylation of PI3K, AKT and mTOR in vivo and in vitro. These results demonstrated that MLT protects against DN and NRK­52E cell injury through inhibiting oxidative damage and regulating autophagy via the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Kidney Diseases , Melatonin , Rats , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Kidney/pathology , Kidney Diseases/pathology , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Glutathione Peroxidase/metabolism , Autophagy , Glucose/metabolism , Superoxide Dismutase/metabolism
17.
Environ Sci Pollut Res Int ; 30(45): 101064-101074, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37646926

ABSTRACT

Autophagy plays a dynamic role in spermatozoa development during spermatogenesis. However, the disruption of autophagic flux induces cell death under metal toxicity and severe oxidative stress. Therefore, we hypothesized that cadmium-induced autophagy might be involved in this mechanism. To verify this hypothesis, we studied cadmium-induced cellular evidence of autophagic-associated spermiophagy within the testis. In the present study, treatment with cadmium caused nuclear depressive disorders and vacuolated mitochondrial damage of Sertoli cells. In addition, spermiophagy through the cellular evidence of spermatozoa phagocytosis, the high lysosomal activity (lysosome engulfment and phagolysosome), and autophagy activity (autolysosome and autophagosome) were observed in the Sertoli cells. The immunohistochemistry of lysosomal membrane protein (LAMP2) to target the phagocytosis of spermatozoa revealed that the immunoreactivity of LAMP2 was overstimulated in the luminal compartment of testis's seminiferous tubules. In addition, the immunohistochemistry and immunofluorescence of autophagy-related protein and microtubule-associated light chain (LC3) results showed the strong immunoreactivity and immunosignaling of LC3 in the Sertoli cells of the testis. Moreover, cadmium caused the overactivation of the expression level of autophagy-related proteins, autophagy-related gene (ATG7), (ATG5), beclin1, LC3, sequestosome 1 (P62), and LAMP2 which were confirmed by western blotting. In summary, this study demonstrated that hazards related to cadmium-induced autophagic-associated spermiophagy with the disruption of autophagic flux, providing new insights into the toxicity of cadmium in mammals and representing a high risk to male fertility.


Subject(s)
Autophagy , Cadmium , Animals , Male , Cadmium/toxicity , Cadmium/metabolism , Lysosomes/metabolism , Cell Death , Spermatogenesis , Mammals
18.
Front Pharmacol ; 14: 1167418, 2023.
Article in English | MEDLINE | ID: mdl-37614318

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the deadliest malignancy. Long non-coding RNAs (lncRNAs) are involved in the development of multiple human malignancies. This study aimed to establish a reliable signature and identify novel biomarkers for HCC patients. Methods: Differentially expressed lncRNAs (DElncRNAs) were identified from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Univariate, LASSO, and multivariate Cox regression analyses were applied to screen the prognostic lncRNAs and establish a prognostic model. Receiver operating characteristic (ROC) curves and Kaplan-Meier analyses were conducted to validate the prognostic value of this model. The association between lncRNAs and differential m6A genes was analyzed by Spearman's analysis. A series of bioinformatic and in vitro experiments were applied to explore the function of hub lncRNA. Results: A total of 32 DElncRNAs were identified, and 12 DElncRNAs were associated with the prognosis of HCC patients. A prognostic signature comprising six prognostic lncRNAs (LINC02428, LINC02163, AC008549.1, AC115619.1, CASC9, and LINC02362) was constructed, and the model exhibited an excellent capacity for prognosis prediction. Furthermore, 12 differential m6A regulators were identified, and RBMX was found to be correlated negatively with the hub lncRNA AC115619.1. The expression level of AC115619.1 was lower in HCC tissues than that in normal tissues and was significantly related to clinicopathologic features, survival rate, and drug sensitivity. Overexpression of AC115619.1 notably inhibited the proliferation, migration, and invasion of HCC cells. Conclusion: This study provided a promising prognostic signature for HCC patients and identified AC115619.1 as a novel biomarker, which plays an essential role in regulating the progression of HCC.

19.
Leg Med (Tokyo) ; 65: 102304, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37562072

ABSTRACT

The method proposed by Suchey-Brooks for adult age estimation based on the surface morphology of the pubic symphysis has been widely accepted. The applicability of the method varies considerably in different populations. The present study established a virtual reference sample and aimed to develop population-specific criteria that can be used for age estimation in different skeletal samples. First, The dry bone specimens from 100 individuals were compared with their corresponding three-dimensional (3D) reconstruction model and showed high inter-method agreement (k = 0.743-0.811), suggesting that the virtual bone model and physical bone specimens have comparable performances in describing the surface morphology of the pubic symphysis. We retrospectively collected clinical computed tomography (CT) data from 895 Chinese patients to create a virtual reference sample of the pubic symphysis. Based on the original Suchey-Brooks method, each of the 895 reference samples was assigned a phase, for each sex and phase, data on the mean age, standard deviation, and 95% age range of the corresponding sample were obtained, which was then used as the "method modified for Chinese" (modified method) and compared to the "SB method". Compared to the SB method, modified method had a lower inaccuracy in dry bones for males over 35 years and females over 45 years, in dry bone CT test sample for males over 55 years and females over 45 years, and in postmortem CT test sample for males over 35 years and females over 55 years. The modified method can improve the accuracy of age estimation for older samples over 40 years. It has shown considerable reliability when applied as a population-specific criterion, but its accuracy is still not sufficient, and caution is needed when using it.


Subject(s)
East Asian People , Pubic Symphysis , Adult , Female , Humans , Male , Age Determination by Skeleton/methods , Forensic Anthropology/methods , Imaging, Three-Dimensional/methods , Pubic Symphysis/anatomy & histology , Pubic Symphysis/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed , Middle Aged
20.
J Hazard Mater ; 459: 132243, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37562348

ABSTRACT

Exposure to cadmium (Cd), an environmental heavy metal contaminant, is a serious threat to global health that increases the burden of liver diseases. Autophagy and apoptosis are important in Cd-induced liver injury. However, the regulatory mechanisms involved in the progression of Cd-induced liver damage are poorly understood. Herein, we investigated the role of vacuolar protein sorting 41 (VPS41) in Cd-induced autophagy and apoptosis in hepatocytes. We used targeted VPS41 regulation to elucidate the mechanism of Cd-induced hepatotoxicity. Our data showed that Cd triggered incomplete autophagy by downregulating VPS41, aggravating Cd-induced hepatocyte apoptosis. Mechanistically, Cd-induced VPS41 downregulation interfered with the mTORC1-TFEB/TFE3 axis, leading to an imbalance in autophagy initiation and termination and abnormal activation of autophagy. Moreover, Cd-induced downregulation of VPS41 inhibited autophagosome-lysosome fusion, leading to blocked autophagic flux. This triggers incomplete autophagy, which causes excessive P62 accumulation, accelerating Caspase-9 (CASP9) cleavage. Incomplete autophagy blocks clearance of cleaved CASP9 (CL-CASP9) via the autophagic pathway, promoting apoptosis. Notably, VPS41 overexpression alleviated Cd-induced incomplete autophagy and apoptosis, independent of the homotypic fusion and protein sorting complex. This study provides a new mechanistic understanding of the relationship between autophagy and apoptosis, suggesting that VPS41 is a new therapeutic target for Cd-induced liver damage.


Subject(s)
Autophagy , Cadmium , Vesicular Transport Proteins , Animals , Mice , Apoptosis , Cadmium/toxicity , Cadmium/metabolism , Hepatocytes/metabolism , Protein Transport , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...