Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37887396

ABSTRACT

The Omega-3 Index (O3I) reflects eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in erythrocytes. While the O3I is associated with numerous health outcomes, its widespread use is limited. We investigated whether urinary metabolites could be used to non-invasively monitor the O3I in an exploratory analysis of a previous placebo-controlled, parallel arm randomized clinical trial in males and females (n = 88) who consumed either ~3 g/d olive oil (OO; control), EPA, or DHA for 12 weeks. Fasted blood and first-void urine samples were collected at baseline and following supplementation, and they were analyzed via gas chromatography and multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), respectively. We tentatively identified S-carboxypropylcysteamine (CPCA) as a novel urinary biomarker reflecting O3I status, which increased following both EPA and DHA (p < 0.001), but not OO supplementation, and was positively correlated to the O3I (R = 0.30, p < 0.001). Additionally, an unknown dianion increased following DHA supplementation, but not EPA or OO. In ROC curve analyses, CPCA outperformed all other urinary metabolites in distinguishing both between OO and EPA or DHA supplementation groups (AUC > 80.0%), whereas the unknown dianion performed best in discriminating OO from DHA alone (AUC = 93.6%). Candidate urinary biomarkers of the O3I were identified that lay the foundation for a non-invasive assessment of omega-3 status.

2.
J Lipid Res ; 64(11): 100445, 2023 11.
Article in English | MEDLINE | ID: mdl-37730162

ABSTRACT

Optimal dietary intake of omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) is critical to human health across the lifespan. However, omega-3 index (O3I) determination is not routinely assessed due to complicated procedures for n3-LCPUFA analysis from the phospholipid (PL) fraction of erythrocytes. Herein, a high-throughput method for lipidomics based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry was applied to identify circulating PLs as surrogate biomarkers of O3I in two randomized placebo-controlled trials. An untargeted lipidomic data workflow using a subgroup analysis of serum extracts from sunflower oil versus high-dose fish oil (FO)-supplemented participants revealed that ingested n3-LCPUFAs were primarily distributed as their phosphatidylcholines (PCs) relative to other PL classes. In both high-dose FO (5.0 g/day) and EPA-only trials (3.0 g/day), PC (16:0_20:5) was the most responsive PL, whereas PC (16:0_22:6) was selective to DHA-only supplementation. We also demonstrated that the sum concentration of both these PCs in fasting serum or plasma samples was positively correlated to the O3I following FO (r = 0.708, P = 1.02 × 10-11, n = 69) and EPA- or DHA-only supplementation (r = 0.768, P = 1.01 × 10-33, n = 167). Overall, DHA was more effective in improving the O3I (ΔO3I = 4.90 ± 1.33%) compared to EPA (ΔO3I = 2.99 ± 1.19%) in young Canadian adults who had a poor nutritional status with an O3I (3.50 ± 0.68%) at baseline. Our method enables the rapid assessment of the O3I by directly measuring two circulating PC species in small volumes of blood, which may facilitate screening applications for population and precision health.


Subject(s)
Fatty Acids, Omega-3 , Lipidomics , Adult , Humans , Eicosapentaenoic Acid , Phosphatidylcholines , Docosahexaenoic Acids , Canada , Fish Oils , Dietary Supplements , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...