Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Nature ; 622(7983): 627-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821702

ABSTRACT

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Subject(s)
Apoptosis , Cellular Senescence , Cytosol , DNA, Mitochondrial , Mitochondria , Animals , Mice , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Proof of Concept Study , Inflammation/metabolism , Phenotype , Longevity , Healthy Aging
3.
Cell Mol Gastroenterol Hepatol ; 11(1): 117-145, 2021.
Article in English | MEDLINE | ID: mdl-32771388

ABSTRACT

BACKGROUND & AIMS: Gastric dysfunction in the elderly may cause reduced food intake, frailty, and increased mortality. The pacemaker and neuromodulator cells interstitial cells of Cajal (ICC) decline with age in humans, and their loss contributes to gastric dysfunction in progeric klotho mice hypomorphic for the anti-aging Klotho protein. The mechanisms of ICC depletion remain unclear. Klotho attenuates Wnt (wingless-type MMTV integration site) signaling. Here, we examined whether unopposed Wnt signaling could underlie aging-associated ICC loss by up-regulating transformation related protein TRP53 in ICC stem cells (ICC-SC). METHODS: Mice aged 1-107 weeks, klotho mice, APCΔ468 mice with overactive Wnt signaling, mouse ICC-SC, and human gastric smooth muscles were studied by RNA sequencing, reverse transcription-polymerase chain reaction, immunoblots, immunofluorescence, histochemistry, flow cytometry, and methyltetrazolium, ethynyl/bromodeoxyuridine incorporation, and ex-vivo gastric compliance assays. Cells were manipulated pharmacologically and by gene overexpression and RNA interference. RESULTS: The klotho and aged mice showed similar ICC loss and impaired gastric compliance. ICC-SC decline preceded ICC depletion. Canonical Wnt signaling and TRP53 increased in gastric muscles of klotho and aged mice and middle-aged humans. Overstimulated canonical Wnt signaling increased DNA damage response and TRP53 and reduced ICC-SC self-renewal and gastric ICC. TRP53 induction persistently inhibited G1/S and G2/M cell cycle phase transitions without activating apoptosis, autophagy, cellular quiescence, or canonical markers/mediators of senescence. G1/S block reflected increased cyclin-dependent kinase inhibitor 1B and reduced cyclin D1 from reduced extracellular signal-regulated kinase activity. CONCLUSIONS: Increased Wnt signaling causes age-related ICC loss by up-regulating TRP53, which induces persistent ICC-SC cell cycle arrest without up-regulating canonical senescence markers.


Subject(s)
Aging/physiology , Cellular Senescence/physiology , Interstitial Cells of Cajal/physiology , Stomach/physiology , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Cycle Checkpoints , Female , Humans , Klotho Proteins/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Models, Animal , Stomach/cytology , Tumor Suppressor Protein p53/metabolism , Up-Regulation , Wnt Signaling Pathway , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...