Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38540368

ABSTRACT

Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and ß-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Proteostasis Deficiencies , Adult , Animals , Humans , Ambystoma mexicanum/genetics , Ambystoma mexicanum/metabolism , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases , Neurodegenerative Diseases/genetics , Aspartic Acid Endopeptidases , tau Proteins/genetics
2.
iScience ; 26(6): 106779, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378333

ABSTRACT

Osteoderms are bony plates found in the skin of vertebrates, mostly commonly in reptiles where they have evolved independently multiple times, suggesting the presence of a gene regulatory network that is readily activated and inactivated. They are absent in birds and mammals except for the armadillo. However, we have discovered that in one subfamily of rodents, the Deomyinae, there are osteoderms in the skin of their tails. Osteoderm development begins in the proximal tail skin and is complete 6 weeks after birth. RNA sequencing has identified the gene networks involved in their differentiation. There is a widespread down-regulation of keratin genes and an up-regulation of osteoblast genes and a finely balanced expression of signaling pathways as the osteoderms differentiate. Future comparisons with reptilian osteoderms may allow us to understand how these structures have evolved and why they are so rare in mammals.

3.
Cartilage ; 14(1): 94-105, 2023 03.
Article in English | MEDLINE | ID: mdl-36802989

ABSTRACT

OBJECTIVE: Hyaline cartilage has limited innate healing abilities and hyaline cartilage loss is a hallmark of osteoarthritis (OA). Animal models can provide important insights into cartilage regeneration potential. One such animal model, the African spiny mouse (Acomys), is capable of regenerating skin, skeletal muscle, and elastic cartilage. This study aims to evaluate whether these regenerative abilities protect Acomys with meniscal injury from OA-related joint damage and behaviors indicative of joint pain and dysfunction. DESIGN: Acomys received destabilization of the medial meniscus (DMM) surgery (n = 11) or a skin incision (n = 10). Gait testing occurred at 4, 6, 8, 10, and 12 weeks after surgery. At endpoint, joints were processed for histology to assess cartilage damage. RESULTS: Following joint injury, Acomys with DMM surgery altered their walking patterns by increasing the percent stance time on the contralateral limb relative to the operated limb, thereby reducing the amount of time the injured limb must bear weight on its own throughout the gait cycle. Histological grading indicated evidence of OA-related joint damage in Acomys with DMM surgery; these changes were primarily driven by loss of structural integrity in the hyaline cartilage. CONCLUSIONS: Acomys developed gait compensations, and the hyaline cartilage in Acomys is not fully protected from OA-related joint damage following meniscal injury, although this damage was less severe than that historically found in C57BL/6 mice with an identical injury. Thus, Acomys do not appear to be completely protected from OA-related changes, despite the ability to regenerate other wounded tissues.


Subject(s)
Murinae , Osteoarthritis , Animals , Mice , Disease Models, Animal , Mice, Inbred C57BL , Osteoarthritis/pathology , Menisci, Tibial/surgery , Menisci, Tibial/pathology
4.
Methods Mol Biol ; 2562: 1-23, 2023.
Article in English | MEDLINE | ID: mdl-36272065

ABSTRACT

For 70 years from the very beginning of developmental biology, the salamander embryo was the pre-eminent model for these studies. Here I review the major discoveries that were made using salamander embryos including regionalization of the mesoderm; patterning of the neural plate; limb development, with the pinnacle being Spemann's Nobel Prize for the discovery of the organizer; and the phenomenon of induction. Salamanders have also been the major organism for elucidating discoveries in organ regeneration, and these are described here too beginning with Spallanzani's experiments in 1768. These include the neurotrophic hypothesis of regeneration, studies of aneurogenic limbs, the concept of dedifferentiation and transdifferentiation, and advances in understanding pattern formation via molecules located on the cell surface. Also described is the prodigious power of brain and spinal cord regeneration and discoveries from lens regeneration, all of which reveal how important salamanders have been as research models.


Subject(s)
Mesoderm , Urodela , Animals , Extremities
5.
Methods Mol Biol ; 2562: 249-258, 2023.
Article in English | MEDLINE | ID: mdl-36272081

ABSTRACT

Retinoic acid (RA) and the family of molecules based on vitamin A known as retinoids have remarkable effects on limb regeneration in salamanders and newts and cause whole limb duplications in a concentration-dependent manner. They respecify all three axes of the limb-the proximodistal, the anteroposterior, and the dorsoventral axis. As a result, complete limbs can be induced to regenerate from distal amputation planes producing two limbs in tandem. Here, we describe the basic methods for undertaking these experiments as well as the use of new synthetic retinoids which have retinoic acid receptor-selective actions. These will be valuable tools in future studies on the molecular basis of limb duplications and thus our understanding of the nature of positional information in the regenerating salamander limb.


Subject(s)
Tretinoin , Vitamin A , Animals , Tretinoin/pharmacology , Retinoids/pharmacology , Salamandridae , Extremities , Receptors, Retinoic Acid
6.
Animals (Basel) ; 14(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38200795

ABSTRACT

Bite wounds due to aggression in male laboratory mice (Mus musculus) are a major welfare concern, often leading to attrition, chronic activation of the innate immune system, and significant impacts on the experimental results derived from the use of these animals as models. Bite wounding within the home-cage of spiny mice (Acomys cahirinus)-a valuable research model for wound healing and menstruation-is poorly characterized. While we have anecdotally observed frequent bite wounding in Acomys, the frequency of aggression within the home-cage, the severity of the bite wounds, and the types of dominance structures remain unstudied. Here, we report that 46% of Acomys cages in our colony had at least one bite wound over the course of a year and that same-sex pairs fought in the home-cage 10% of the time during their dark/active phase. Both sexes inflicted wounds and frequently engaged in agonistic behaviors, even with stable dominance structures. We found that females inflicted less severe bite wounds in same-sex housing. Also, aged females in same-sex pairs were never observed fighting, and no bite wounds were observed in aged Acomys. These results suggest that we should consider whether bite wounding negatively impacts our experimental results since physical trauma is known to alter menstrual cycling and healing.

7.
Wellcome Open Res ; 7: 215, 2022.
Article in English | MEDLINE | ID: mdl-36060301

ABSTRACT

Background: The African spiny mouse ( Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency. Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system. Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPS-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naïve pluripotency markers. Conclusions: There are significant roadblocks to reprogramming Acomys cells, necessitating future studies to determine Acomys-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during Acomys dedifferentiation may suggest that tumor suppressor pathways play an important role in Acomys regeneration and that Acomys may possess unreported cancer resistance.

8.
Cells ; 10(9)2021 08 24.
Article in English | MEDLINE | ID: mdl-34571821

ABSTRACT

We know little about the control of positional information (PI) during axolotl limb regeneration, which ensures that the limb regenerates exactly what was amputated, and the work reported here investigates this phenomenon. Retinoic acid administration changes the PI in a proximal direction so that a complete limb can be regenerated from a hand. Rather than identifying all the genes altered by RA treatment of the limb, we have eliminated many off-target effects by using retinoic acid receptor selective agonists. We firstly identify the receptor involved in this respecification process as RARα and secondly, identify the genes involved by RNA sequencing of the RARα-treated blastemal mesenchyme. We find 1177 upregulated genes and 1403 downregulated genes, which could be identified using the axolotl genome. These include several genes known to be involved in retinoic acid metabolism and in patterning. Since positional information is thought to be a property of the cell surface of blastemal cells when we examine our dataset with an emphasis on this aspect, we find the top canonical pathway is integrin signaling. In the extracellular matrix compartment, we find a MMP and several collagens are upregulated; several cell membrane genes and secretory factors are also upregulated. This provides data for future testing of the function of these candidates in the control of PI during limb regeneration.


Subject(s)
Ambystoma mexicanum/metabolism , Extremities/physiology , Receptors, Retinoic Acid/metabolism , Regeneration/physiology , Animals , Extracellular Matrix/metabolism , Mesoderm/metabolism , Mesoderm/physiology , Signal Transduction/physiology , Tretinoin/metabolism
9.
Int J Cardiol ; 338: 196-203, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34126132

ABSTRACT

BACKGROUND: Ischemic heart disease and the resulting heart failure continue to carry high morbidity and mortality, and a breakthrough in our understanding of this disorder is needed. The adult spiny mouse (Acomys cahirinus) has evolved the remarkable capacity to regenerate full-thickness skin tissue, including microvasculature and cartilage, without fibrosis or scarring. We hypothesized that lack of scarring and resulting functional regeneration also applies to the adult Acomys heart. METHODS AND RESULTS: We compared responses of the Acomys heart to CD1 outbred Mus heart following acute left anterior descending coronary artery ligation to induce myocardial infarction. Both Acomys and Mus hearts showed decreased ejection fraction (EF) after ligation. However, Acomys hearts showed significant EF recovery to pre-ligation values over four weeks. Histological analysis showed comparable infarct area 24-h after ligation with a similar collateral flow in both species' hearts, but subsequently, Acomys displayed reduced infarct size, regenerated microvasculature, and increased cell proliferative activity in the infarcted area. CONCLUSIONS: These observations suggest that adult Acomys displays remarkable cardiac recovery properties after acute coronary artery occlusion and may be a useful model to understand functional recovery better. TRANSLATIONAL PERSPECTIVE: Adult Acomys provides a novel mammalian model to further investigate the cardioprotective and regenerative signaling mechanisms in adult mammals. This opens the door to breakthrough treatment strategies for the injured myocardium and help millions of patients with heart failure secondary to tissue injury with irreversible damage.


Subject(s)
Regeneration , Skin , Adult , Animals , Cicatrix , Fibrosis , Humans , Murinae , Skin/pathology
10.
NPJ Regen Med ; 6(1): 1, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397999

ABSTRACT

The spiny mouse (Acomys species) has emerged as an exciting research organism due to its remarkable ability to undergo scarless regeneration of skin wounds and ear punches. Excitingly, Acomys species demonstrate scar-free healing in a wide-range of tissues beyond the skin. In this perspective article, we discuss published findings from a variety of tissues to highlight how this emerging research organism could shed light on numerous clinically relevant human diseases. We also discuss the challenges of working with this emerging research organism and suggest strategies for future Acomys-inspired research.

11.
J Anat ; 238(5): 1191-1202, 2021 05.
Article in English | MEDLINE | ID: mdl-33277722

ABSTRACT

The vast majority of neural stem cell studies have been conducted on the brains of mice and rats, the classical model rodent. Non-model organisms may, however, give us some important insights into how to increase neural stem cell numbers for regenerative purposes and with this in mind we have characterized these cells in the brain of the spiny mouse, Acomys cahirinus. This unique mammal is highly regenerative and damaged tissue does not scar or fibrose. We find that there are more than three times as many stem cells in the SVZ and more than 3 times as many proliferating cells compared to the CD-1 outbred strain of lab mouse. These additional cells create thick stem cell regions in the wall of the SVZ and very obvious columns of cells moving into the rostral migratory stream. In the dentate gyrus, there are more than 10 times as many cells proliferating in the sub-granular layer and twice the number of doublecortin expressing neuroblasts. A preliminary analysis of some stem cell niche genes has identified Sox2, Notch1, Shh, and Noggin as up-regulated in the SVZ of Acomys and Bmp2 as being down-regulated. The highly increased neural stem cell numbers in Acomys may endow this animal with increased regenerative properties in the brain or improved physiological performance important for its survival.


Subject(s)
Brain/cytology , Neural Stem Cells/cytology , Animals , Cell Movement/physiology , Cell Proliferation/physiology , Doublecortin Protein , Female , Male , Murinae
12.
PLoS One ; 15(10): e0241617, 2020.
Article in English | MEDLINE | ID: mdl-33125436

ABSTRACT

The study of long-lived and regenerative animal models has revealed diverse protective responses to stressors such as aging and tissue injury. Spiny mice (Acomys) are a unique mammalian model of skin wound regeneration, but their response to other types of physiological skin damage has not been investigated. In this study, we examine how spiny mouse skin responds to acute UVB damage or chronological aging compared to non-regenerative C57Bl/6 mice (M. musculus). We find that, compared to M. musculus, the skin epidermis in A. cahirinus experiences a similar UVB-induced increase in basal cell proliferation but exhibits increased epidermal turnover. Notably, A. cahirinus uniquely form a suprabasal layer co-expressing Keratin 14 and Keratin 10 after UVB exposure concomitant with reduced epidermal inflammatory signaling and reduced markers of DNA damage. In the context of aging, old M. musculus animals exhibit typical hallmarks including epidermal thinning, increased inflammatory signaling and senescence. However, these age-related changes are absent in old A. cahirinus skin. Overall, we find that A. cahirinus have evolved novel responses to skin damage that reveals new aspects of its regenerative phenotype.


Subject(s)
Aging/radiation effects , Mice/physiology , Skin/radiation effects , Ultraviolet Rays/adverse effects , Animals , Cell Proliferation/radiation effects , Cellular Senescence/radiation effects , Epidermal Cells/cytology , Epidermal Cells/radiation effects , Epidermis/physiology , Epidermis/radiation effects , Female , Male , Mice, Inbred C57BL , Skin/cytology
13.
Curr Opin Genet Dev ; 64: 31-36, 2020 10.
Article in English | MEDLINE | ID: mdl-32599302

ABSTRACT

We describe the tissues and organs that show exceptional regenerative ability following injury in the spiny mouse, Acomys. The skin and ear regenerate: hair and its associated stem cell niches, sebaceous glands, dermis, adipocytes, cartilage, smooth muscle, and skeletal muscle. Internal tissues such as the heart, kidney, muscle, and spinal cord respond to damage by showing significantly reduced inflammation and improved regeneration responses. The reason for this improved ability may lie in the immune system which shows a blunted inflammatory response to injury compared to that of the typical mammal, but we also show that there are distinct biomechanical properties of Acomys tissues. Examining the regenerative behavior of closely related mammals may provide insights into the evolution of this remarkable property.


Subject(s)
Immune System/physiology , Models, Biological , Murinae/physiology , Regeneration , Wound Healing , Animals
14.
Sci Rep ; 10(1): 8641, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32433574

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Subcell Biochem ; 95: 87-117, 2020.
Article in English | MEDLINE | ID: mdl-32297297

ABSTRACT

This chapter brings together data on the role of retinoic acid (RA) in the embryonic development of fins in zebrafish , limbs in amphibians , chicks , and mice, and regeneration of the amphibian limb . The intention is to determine whether there is a common set of principles by which we can understand the mode of action of RA in both embryos and adults. What emerges from this synthesis is that there are indeed commonalities in the involvement of RA in processes that ventralize, posteriorize, and proximalize the developing and regenerating limb . Different axes of the limb have historically been studied independently; as for example, the embryonic development of the anteroposterior (AP) axis of the chick limb bud versus the regeneration of the limb bud proximodistal (PD) axis . But when we take a broader view, a unifying principle emerges that explains why RA administration to embryos and regenerating limbs results in the development of multiple limbs in both cases. As might be expected, different molecular pathways govern the development of different systems and model organisms, but despite these differences, the pathways involve similar RA signaling genes, such as tbx5, meis, shh, fgfs and hox genes. Studies of developing and regenerating systems have highlighted that RA acts by being synthesized in one embryonic location while acting in another one, exactly as embryonic morphogens do, although there is no evidence for the presence of an RA gradient within the limb . What also emerges is that there is a paucity of information on the involvement of RA in development of the dorsoventral (DV) axis . A molecular explanation as to how RA establishes and alters positional information in all three axes is the most important area of study for the future.


Subject(s)
Extremities/growth & development , Regeneration , Signal Transduction , Tretinoin/metabolism , Animals
16.
Development ; 147(4)2020 02 25.
Article in English | MEDLINE | ID: mdl-32098790

ABSTRACT

The spiny mouse, Acomys spp., is a recently described model organism for regeneration studies. For a mammal, it displays surprising powers of regeneration because it does not fibrose (i.e. scar) in response to tissue injury as most other mammals, including humans, do. In this Primer article, we review these regenerative abilities, highlighting the phylogenetic position of the spiny mouse relative to other rodents. We also briefly describe the Acomys tissues that have been used for regeneration studies and the common features of their regeneration compared with the typical mammalian response. Finally, we discuss the contribution that Acomys has made in understanding the general principles of regeneration and elaborate hypotheses as to why this mammal is successful at regenerating.


Subject(s)
Models, Animal , Murinae/physiology , Regeneration , Animals , Biomechanical Phenomena , Ear/physiology , Fibrosis , Humans , Immune System , Kidney/physiology , Mice , Muscle, Skeletal/physiology , Phylogeny , Rats , Regenerative Medicine , Skin Physiological Phenomena , Spinal Cord/physiology
17.
Sci Rep ; 10(1): 166, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31932597

ABSTRACT

The spiny mouse, Acomys cahirinus displays a unique wound healing ability with regeneration of all skin components in a scar-free manner. To identify orchestrators of this regenerative response we have performed proteomic analyses of skin from Acomys and Mus musculus before and after wounding. Of the ~2000 proteins identified many are expressed at similar levels in Acomys and Mus, but there are significant differences. Following wounding in Mus the complement and coagulation cascades, PPAR signaling pathway and ECM-receptor interactions predominate. In Acomys, other pathways predominate including the Wnt, MAPK, the ribosome, proteasome, endocytosis and tight junction pathways. Notable among Acomys specific proteins are several ubiquitin-associated enzymes and kinases, whereas in Mus immuno-modulation proteins characteristic of inflammatory response are unique or more prominent. ECM proteins such as collagens are more highly expressed in Mus, but likely more important is the higher expression of matrix remodeling proteases in Acomys. Another distinctive difference between Acomys and Mus lies in the macrophage-produced arginase 1 is found in Mus whereas arginase 2 is found in Acomys. Thus, we have identified several avenues for experimental approaches whose aim is to reduce the fibrotic response that the typical mammal displays in response to wounding.


Subject(s)
Cicatrix/metabolism , Proteome/analysis , Regeneration , Skin/metabolism , Wound Healing , Animals , Cicatrix/pathology , Mice , Murinae
18.
J Comp Neurol ; 528(9): 1535-1547, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31820438

ABSTRACT

The spiny mouse (Acomys cahirinus) appears to be unique among mammals by showing little scarring or fibrosis after skin or muscle injury, but the Acomys response to spinal cord injury (SCI) is unknown. We tested the hypothesis that Acomys would have molecular and immunohistochemical evidence of reduced spinal inflammation and fibrosis following SCI as compared to C57BL/6 mice (Mus), which similar to all mammals studied to date exhibits spinal scarring following SCI. Initial experiments used two pathway-focused RT-PCR gene arrays ("wound healing" and "neurogenesis") to evaluate tissue samples from the C2-C6 spinal cord 3 days after a C3/C4 hemi-crush injury (C3Hc). Based on the gene array results, specific genes were selected for RT-qPCR evaluation using species-specific primers. The results supported our hypothesis by showing increased inflammation and fibrosis related gene expression (Serpine 1, Plau, and Timp1) in Mus as compared to Acomys (p < .05). RT-qPCR also showed enhanced stem cell and axonal guidance related gene expression (Bmp2, GDNF, and Shh) in Acomys compared to Mus (p < .05). Immunohistochemical evaluation of the spinal lesion at 4 weeks postinjury indicated less collagen IV immunostaining in Acomys (p < .05). Glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1(IBA1) immunostaining indicated morphological differences in the appearance of astrocytes and macrophages/microglia in Acomys. Collectively, the molecular and histologic results support the hypothesis that Acomys has reduced spinal inflammation and fibrosis following SCI. We suggest that Acomys may be a useful comparative model to study adaptive responses to SCI.


Subject(s)
Murinae , Spinal Cord Injuries/pathology , Animals , Cervical Vertebrae , Fibrosis/pathology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Species Specificity , Transcriptome
19.
PLoS One ; 14(5): e0216228, 2019.
Article in English | MEDLINE | ID: mdl-31141508

ABSTRACT

The African spiny mouse, Acomys spp., is capable of scar-free dermal wound healing. Here, we have performed a comprehensive analysis of gene expression throughout wound healing following full-thickness excisional dermal wounds in both Acomys cahirinus and Mus musculus. Additionally, we provide an annotated, de novo transcriptome assembly of A. cahirinus skin and skin wounds. Using a novel computational comparative RNA-Seq approach along with pathway and co-expression analyses, we identify enrichment of regeneration associated genes as well as upregulation of genes directly related to muscle development or function. Our RT-qPCR data reveals induction of the myogenic regulatory factors, as well as upregulation of embryonic myosin, starting between days 14 and 18 post-wounding in A. cahirinus. In contrast, the myogenic regulatory factors remain downregulated, embryonic myosin is only modestly upregulated, and no new muscle fibers of the panniculus carnosus are generated in M. musculus wounds. Additionally, we show that Col6a1, a key component of the satellite cell niche, is upregulated in A. cahirinus compared to M. musculus. Our data also demonstrate that the macrophage profile and inflammatory response is different between species, with A. cahirinus expressing significantly higher levels of Il10. We also demonstrate differential expression of the upstream regulators Wnt7a, Wnt2 and Wnt6 during wound healing. Our analyses demonstrate that A. cahirinus is capable of de novo skeletal muscle regeneration of the panniculus carnosus following removal of the extracellular matrix. We believe this study represents the first detailed analysis of de novo skeletal muscle regeneration observed in an adult mammal.


Subject(s)
Murinae/physiology , Muscle, Skeletal/physiology , Regeneration , Skin , Transcriptome , Wound Healing , Animals , Mice , Murinae/genetics , Muscle Development/genetics , Myosins/metabolism , Regeneration/genetics , Wnt Proteins/metabolism
20.
Exp Dermatol ; 28(4): 436-441, 2019 04.
Article in English | MEDLINE | ID: mdl-30457673

ABSTRACT

Members of the Acomys genus, known as spiny mice, are unique among mammals in being perfectly capable of regenerating large areas of skin that have been removed. During this regenerative process hairs, sebaceous glands, erector pili muscles, adipocytes and the panniculus carnosus all regenerate and the dermis does not scar. We review here the processes that the epidermis and the individual components of the dermis undergo during spiny mouse regeneration as well as the molecules that have been identified as potentially important in regeneration. We then relate this to what has been proposed as playing a role in studies from the laboratory mouse, Mus musculus. Differences in the immune systems of spiny mice and laboratory mice are also highlighted as this is suggested to play a part not only in the perfect wound healing that embryos display but also in regeneration in lower vertebrates.


Subject(s)
Murinae/physiology , Skin , Wound Healing , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...