Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 55, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261097

ABSTRACT

To investigate the mechanism(s) underlying the expression of primate-specific microRNAs (miRs), we sought DNA regulatory elements and proteins mediating expression of the primate-specific hsa-miR-608 (miR-608), which is located in the SEMA4G gene and facilitates the cholinergic blockade of inflammation by targeting acetylcholinesterase mRNA. 'Humanized' mice carrying pre-miR-608 flanked by 250 bases of endogenous sequences inserted into the murine Sema4g gene successfully expressed miR-608. Moreover, by flanking miR-608 by shortened fragments of its human genome region we identified an active independent promoter within the 150 nucleotides 5' to pre-miR-608, which elevated mature miR-608 levels by 100-fold in transfected mouse- and human-originated cells. This highlighted a regulatory role of the 5' flank as enabling miR-608 expression. Moreover, pull-down of the 150-base 5' sequence revealed its interaction with ribosomal protein L24 (RPL24), implicating an additional mechanism controlling miR-608 levels. Furthermore, RPL24 knockdown altered the expression of multiple miRs, and RPL24 immunoprecipitation indicated that up- or down-regulation of the mature miRs depended on whether their precursors bind RPL24 directly. Finally, further tests showed that RPL24 interacts directly with DDX5, a component of the large microprocessor complex, to inhibit miR processing. Our findings reveal that RPL24, which has previously been shown to play a role in miR processing in Arabidopsis thaliana, has a similar evolutionarily conserved function in miR biogenesis in mammals. We thus characterize a novel extra-ribosomal role of RPL24 in primate miR regulation.


Subject(s)
MicroRNAs , Ribosomal Proteins , Animals , Humans , Mice , Acetylcholinesterase , MicroRNAs/genetics , Primates , Ribosomal Proteins/genetics
2.
Mol Metab ; 79: 101856, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141848

ABSTRACT

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS: Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS: Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator ß-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION: Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Lysine , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oleic Acid , Perilipin-2
3.
Cells ; 12(13)2023 07 06.
Article in English | MEDLINE | ID: mdl-37443828

ABSTRACT

Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.


Subject(s)
Caffeine , Zebrafish , Animals , Zebrafish/genetics , Larva , Caffeine/pharmacology , Obesity/genetics , Obesity/metabolism , Inflammation , Anxiety
4.
Alzheimers Dement ; 19(11): 5159-5172, 2023 11.
Article in English | MEDLINE | ID: mdl-37158312

ABSTRACT

INTRODUCTION: Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in transfer RNS (tRNA) fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). METHODS: We analyzed small RNA-sequencing (RNA-Seq) data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. RESULTS: NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single-cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. DISCUSSION: Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.


Subject(s)
Alzheimer Disease , Male , Female , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Nucleus Accumbens/metabolism , Cholinergic Neurons/metabolism , Cholinergic Agents/metabolism , RNA/metabolism , RNA, Transfer/metabolism
5.
bioRxiv ; 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36798311

ABSTRACT

Introduction: Females with Alzheimer's disease (AD) suffer accelerated dementia and loss of cholinergic neurons compared to males, but the underlying mechanisms are unknown. Seeking causal contributors to both these phenomena, we pursued changes in tRNA fragments (tRFs) targeting cholinergic transcripts (CholinotRFs). Methods: We analyzed small RNA-sequencing data from the nucleus accumbens (NAc) brain region which is enriched in cholinergic neurons, compared to hypothalamic or cortical tissues from AD brains; and explored small RNA expression in neuronal cell lines undergoing cholinergic differentiation. Results: NAc CholinotRFs of mitochondrial genome origin showed reduced levels that correlated with elevations in their predicted cholinergic-associated mRNA targets. Single cell RNA seq from AD temporal cortices showed altered sex-specific levels of cholinergic transcripts in diverse cell types; inversely, human-originated neuroblastoma cells under cholinergic differentiation presented sex-specific CholinotRF elevations. Discussion: Our findings support CholinotRFs contributions to cholinergic regulation, predicting their involvement in AD sex-specific cholinergic loss and dementia.

6.
J Neurochem ; 164(5): 671-683, 2023 03.
Article in English | MEDLINE | ID: mdl-36354307

ABSTRACT

Transfer RNA fragments (tRFs) have recently been shown to be an important family of small regulatory RNAs with diverse functions. Recent reports have revealed modified tRF blood levels in a number of nervous system conditions including epilepsy, ischemic stroke, and neurodegenerative diseases, but little is known about tRF levels in the cerebrospinal fluid (CSF). To address this issue, we studied age, sex, and Parkinson's disease (PD) effects on the distributions of tRFs in the CSF and blood data of healthy controls and PD patients from the NIH and the Parkinson's Progression Markers Initiative (PPMI) small RNA-seq datasets. We discovered that long tRFs are expressed in higher levels in the CSF than in the blood. Furthermore, the CSF showed a pronounced age-associated decline in the level of tRFs cleaved from the 3'-end and anti-codon loop of the parental tRNA (3'-tRFs, i-tRFs), and more pronounced profile differences than the blood profiles between the sexes. In comparison, we observed moderate age-related elevation of blood 3'-tRF levels. In addition, distinct sets of tRFs in the CSF and in the blood segregated PD patients from controls. Finally, we found enrichment of tRFs predicted to target cholinergic mRNAs (Cholino-tRFs) among mitochondrial-originated tRFs, raising the possibility that the neurodegeneration-related mitochondrial impairment in PD patients may lead to deregulation of their cholinergic tone. Our findings demonstrate that the CSF and blood tRF profiles are distinct and that the CSF tRF profiles are modified in a sex-, age-, and disease-related manner, suggesting that they reflect the inter-individual cerebral differences and calling for incorporating this important subset of small RNA regulators into future studies.


Subject(s)
Parkinson Disease , Humans , RNA, Transfer , Mitochondria/genetics
7.
Front Mol Neurosci ; 15: 941467, 2022.
Article in English | MEDLINE | ID: mdl-36117917

ABSTRACT

Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).

8.
Acta Neuropathol ; 144(5): 881-910, 2022 11.
Article in English | MEDLINE | ID: mdl-36121476

ABSTRACT

The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.


Subject(s)
Heat-Shock Proteins/metabolism , Intrinsically Disordered Proteins , alpha-Synuclein/metabolism , Animals , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Molecular Chaperones/metabolism , Phosphoproteins , Ubiquitins , alpha-Synuclein/toxicity
9.
Neuronal Signal ; 6(1): NS20210035, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35211331

ABSTRACT

Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs (miRs) and transfer RNA fragments (tRFs) may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood-brain barrier (BBB) protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body-brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammation-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.

10.
Front Immunol ; 11: 590870, 2020.
Article in English | MEDLINE | ID: mdl-33163005

ABSTRACT

The COVID-19 pandemic exerts inflammation-related parasympathetic complications and post-infection manifestations with major inter-individual variability. To seek the corresponding transcriptomic origins for the impact of COVID-19 infection and its aftermath consequences, we sought the relevance of long and short non-coding RNAs (ncRNAs) for susceptibility to COVID-19 infection. We selected inflammation-prone men and women of diverse ages among the cohort of Genome Tissue expression (GTEx) by mining RNA-seq datasets from their lung, and blood tissues, followed by quantitative qRT-PCR, bioinformatics-based network analyses and thorough statistics compared to brain cell culture and infection tests with COVID-19 and H1N1 viruses. In lung tissues from 57 inflammation-prone, but not other GTEx donors, we discovered sharp declines of the lung pathology-associated ncRNA DANCR and the nuclear paraspeckles forming neuroprotective ncRNA NEAT1. Accompanying increases in the acetylcholine-regulating transcripts capable of controlling inflammation co-appeared in SARS-CoV-2 infected but not H1N1 influenza infected lung cells. The lung cells-characteristic DANCR and NEAT1 association with inflammation-controlling transcripts could not be observed in blood cells, weakened with age and presented sex-dependent links in GTEx lung RNA-seq dataset. Supporting active involvement in the inflammatory risks accompanying COVID-19, DANCR's decline associated with decrease of the COVID-19-related cellular transcript ACE2 and with sex-related increases in coding transcripts potentiating acetylcholine signaling. Furthermore, transcription factors (TFs) in lung, brain and cultured infected cells created networks with the candidate transcripts, indicating tissue-specific expression patterns. Supporting links of post-infection inflammatory and cognitive damages with cholinergic mal-functioning, man and woman-originated cultured cholinergic neurons presented differentiation-related increases of DANCR and NEAT1 targeting microRNAs. Briefly, changes in ncRNAs and TFs from inflammation-prone human lung tissues, SARS-CoV-2-infected lung cells and man and woman-derived differentiated cholinergic neurons reflected the inflammatory pathobiology related to COVID-19. By shifting ncRNA differences into comparative diagnostic and therapeutic profiles, our RNA-sequencing based Resource can identify ncRNA regulating candidates for COVID-19 and its associated immediate and predicted long-term inflammation and neurological complications, and sex-related therapeutics thereof. Our findings encourage diagnostics of involved tissue, and further investigation of NEAT1-inducing statins and anti-cholinergic medications in the COVID-19 context.


Subject(s)
COVID-19/genetics , Cholinergic Neurons/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2 , Transcriptome , A549 Cells , Acetylcholine/metabolism , Brain/metabolism , Brain/pathology , COVID-19/virology , Databases, Genetic , Female , Humans , Inflammation/genetics , Influenza A Virus, H1N1 Subtype , Influenza, Human/genetics , Influenza, Human/virology , Lung/metabolism , Lung/pathology , Male , RNA-Seq , Transcription Factors/genetics
11.
EMBO Mol Med ; 12(9): e11942, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32715657

ABSTRACT

Circular RNAs (circRNAs) are brain-abundant RNAs of mostly unknown functions. To seek their roles in Parkinson's disease (PD), we generated an RNA sequencing resource of several brain region tissues from dozens of PD and control donors. In the healthy substantia nigra (SN), circRNAs accumulate in an age-dependent manner, but in the PD SN this correlation is lost and the total number of circRNAs reduced. In contrast, the levels of circRNAs are increased in the other studied brain regions of PD patients. We also found circSLC8A1 to increase in the SN of PD individuals. CircSLC8A1 carries 7 binding sites for miR-128 and is strongly bound to the microRNA effector protein Ago2. Indeed, RNA targets of miR-128 are also increased in PD individuals, suggesting that circSLC8A1 regulates miR-128 function and/or activity. CircSLC8A1 levels also increased in cultured cells exposed to the oxidative stress-inducing agent paraquat but were decreased in cells treated with the neuroprotective antioxidant regulator drug Simvastatin. Together, our work links circSLC8A1 to oxidative stress-related Parkinsonism and suggests further exploration of its molecular function in PD.


Subject(s)
MicroRNAs , Parkinson Disease , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress , Parkinson Disease/genetics , RNA, Circular , Substantia Nigra/metabolism
12.
Biomolecules ; 10(6)2020 06 03.
Article in English | MEDLINE | ID: mdl-32503154

ABSTRACT

Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.


Subject(s)
Cholinergic Agents/metabolism , Glutamic Acid/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Animals , Male , Mice , Mice, Inbred Strains , Mice, Transgenic
13.
FEBS Lett ; 594(14): 2185-2198, 2020 07.
Article in English | MEDLINE | ID: mdl-32330292

ABSTRACT

Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual-, sex-, and tissue-related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic-targeting noncoding RNAs, named Cholino-noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino-ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh-signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via 'sponging' events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino-ncRNAs or in their recognition sites in the ACh-signaling associated genes may modify ACh signaling-regulated processes. Taken together, both inherited and acquired changes in the function of Cholino-ncRNAs impact ACh-related deficiencies, opening new venues for individual, sex-related, and age-specific oriented research, diagnosis, and therapeutics.


Subject(s)
Acetylcholine/metabolism , Aging/genetics , Aging/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Animals , Female , Humans , Male , Spatio-Temporal Analysis
15.
FASEB J ; 33(10): 11223-11234, 2019 10.
Article in English | MEDLINE | ID: mdl-31311324

ABSTRACT

Recent reports attribute numerous regulatory functions to the nuclear paraspeckle-forming long noncoding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in-house and web-available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron-specific formation of NEAT1-based paraspeckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)-induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up-regulation, whereas RNA interference-mediated depletion of NEAT1 exacerbated death of PQ-exposed cells in a leucine-rich repeat kinase 2-mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.-Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.


Subject(s)
Neuroprotection/physiology , Oxidative Stress/physiology , Parkinson Disease/metabolism , RNA, Long Noncoding/metabolism , Substantia Nigra/metabolism , Brain/metabolism , Cell Line , HEK293 Cells , Humans , Neurons/metabolism , RNA Interference/physiology
SELECTION OF CITATIONS
SEARCH DETAIL