Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nutr Cancer ; 75(1): 123-139, 2023.
Article in English | MEDLINE | ID: mdl-35950572

ABSTRACT

Colorectal cancer (CRC) is one of the top contributors to the global burden of cancer incidence and mortality, with both genetic and environmental factors contributing to its etiology. Environmental factors may be the cause of up to 60% of the risk of developing CRC, with gut microbiota being a crucial modifiable risk factor. The microbial ecosystem plays a vital role in CRC prevention and antitumoral response through modulation of the immune system and production of short-chain fatty acids. Numerous approaches have been followed to modify the gut microbiota in order to reduce the risk of cancer development, improve treatment efficacy, and reduce side effects. This study aims to perform a systematic analysis of the published literature to elucidate whether microbiota modulation through pre-, pro-, and symbiotic treatment and/or nutritional intervention can be beneficial for patients diagnosed with CRC. Our analysis finds that some prebiotics, mainly in the form of oligo- and polysaccharides, probiotics such as lactic strain producers of short-chain fatty acids, and consumption of a Mediterranean plant-based diet may be beneficial for patients diagnosed with CRC. However, there is a need for clinical data which evaluate the modulation of gut microbiota in a safe and effective manner.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Probiotics , Humans , Colorectal Neoplasms/therapy , Prebiotics , Probiotics/therapeutic use
2.
Aging Cell ; 21(10): e13707, 2022 10.
Article in English | MEDLINE | ID: mdl-36087066

ABSTRACT

Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.


Subject(s)
Melanoma , Monomeric GTP-Binding Proteins , Arylsulfatases/metabolism , Autophagy , Biomarkers/metabolism , Cathepsins , Cellular Senescence , Cytokines/metabolism , Humans , Lysosomes/metabolism , Melanoma/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protease Inhibitors/metabolism , Proteome/metabolism , Proteomics , Secretome
3.
Autophagy ; 18(10): 2505-2507, 2022 10.
Article in English | MEDLINE | ID: mdl-35787098

ABSTRACT

Atherosclerosis, the leading cause of cardiovascular death, is driven by hyperlipidemia, inflammation and aggravated by aging. As chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation for intracellular proteins, diminishes with age and is inhibited by lipid excess, we studied if the decline in CMA could contribute to atherosclerosis pathogenesis. We found that CMA declines in human and murine vasculature with disease progression. Inhibition and reactivation of CMA using transgenic mouse models establishes a protective effect of CMA against atherogenesis. CMA upregulation ameliorates both systemic metabolic parameters, and vascular cell function. Our work suggests CMA reactivation could be a viable therapeutic strategy to prevent and reduce cardiovascular disease.


Subject(s)
Atherosclerosis , Chaperone-Mediated Autophagy , Animals , Atherosclerosis/metabolism , Autophagy/physiology , Humans , Lipids , Lysosomes/metabolism , Mice , Mice, Transgenic , Molecular Chaperones/metabolism
4.
Proc Natl Acad Sci U S A ; 119(14): e2121133119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35363568

ABSTRACT

Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.


Subject(s)
Atherosclerosis , Chaperone-Mediated Autophagy , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Chaperone-Mediated Autophagy/genetics , Disease Models, Animal , Lysosomes/metabolism , Mice
5.
PLoS Biol ; 20(2): e3001550, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35120120

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.3000301.].

6.
Arterioscler Thromb Vasc Biol ; 40(6): 1510-1522, 2020 06.
Article in English | MEDLINE | ID: mdl-32349535

ABSTRACT

OBJECTIVE: Endothelial Cav-1 (caveolin-1) expression plays a relevant role during atherogenesis by controlling NO production, vascular inflammation, LDL (low-density lipoprotein) transcytosis, and extracellular matrix remodeling. Additional studies have identified cholesterol-rich membrane domains as important regulators of autophagy by recruiting ATGs (autophagy-related proteins) to the plasma membrane. Here, we investigate how the expression of Cav-1 in the aortic endothelium influences autophagy and whether enhanced autophagy contributes to the atheroprotective phenotype observed in Cav-1-deficient mice. Approach and Results: To analyze the impact of Cav-1 deficiency on regulation of autophagy in the aortic endothelium during the progression of atherosclerosis, we fed Ldlr-/- and Cav-1-/-Ldlr-/- mice a Western diet and assessed autophagy in the vasculature. We observe that the absence of Cav-1 promotes autophagy activation in athero-prone areas of the aortic endothelium by enhancing autophagic flux. Mechanistically, we found that Cav-1 interacts with the ATG5-ATG12 complex and influences the cellular localization of autophagosome components in lipid rafts, which controls the autophagosome formation and autophagic flux. Pharmacological inhibition of autophagy attenuates the atheroprotection observed in Cav-1-/- mice by increasing endothelial inflammation and macrophage recruitment, identifying a novel molecular mechanism by which Cav-1 deficiency protects against the progression of atherosclerosis. CONCLUSIONS: These results identify Cav-1 as a relevant regulator of autophagy in the aortic endothelium and demonstrate that pharmacological suppression of autophagic flux in Cav-1-deficient mice attenuates the atheroprotection observed in Cav-1-/- mice. Additionally, these findings suggest that activation of endothelial autophagy by blocking Cav-1 might provide a potential therapeutic strategy for cardiovascular diseases including atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Autophagy/physiology , Caveolin 1/deficiency , Endothelium, Vascular/physiopathology , Vasculitis/prevention & control , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Aorta/pathology , Aorta/physiopathology , Aorta/ultrastructure , Atherosclerosis/etiology , Autophagy/drug effects , Caveolin 1/analysis , Caveolin 1/physiology , Diet, Western , Endothelial Cells/chemistry , Endothelial Cells/physiology , Endothelial Cells/ultrastructure , Endothelium, Vascular/chemistry , Endothelium, Vascular/ultrastructure , Female , Humans , Male , Membrane Microdomains/chemistry , Membrane Microdomains/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Receptors, LDL/deficiency
7.
Cardiovasc Res ; 116(3): 483-504, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31504266

ABSTRACT

Autophagy is a highly conserved recycling mechanism essential for maintaining cellular homeostasis. The pathophysiological role of autophagy has been explored since its discovery 50 years ago, but interest in autophagy has grown exponentially over the last years. Many researchers around the globe have found that autophagy is a critical pathway involved in the pathogenesis of cardiac diseases. Several groups have created novel and powerful tools for gaining deeper insights into the role of autophagy in the aetiology and development of pathologies affecting the heart. Here, we discuss how established and emerging methods to study autophagy can be used to unravel the precise function of this central recycling mechanism in the cardiac system.


Subject(s)
Autophagy , Heart Diseases/pathology , Mitochondria, Heart/ultrastructure , Myocardium/ultrastructure , Animals , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Chaperone-Mediated Autophagy , Disease Models, Animal , Heart Diseases/genetics , Heart Diseases/metabolism , Humans , Mitochondria, Heart/metabolism , Mitophagy , Myocardium/metabolism , Signal Transduction
8.
EBioMedicine ; 46: 274-289, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31395500

ABSTRACT

BACKGROUND: Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Tnfrsf12a; Fn14) participate in the inflammatory response associated with vascular remodeling. However, the functional effect of TWEAK on vascular smooth muscle cells (VSMCs) is not completely elucidated. METHODS: Next generation sequencing-based methods were performed to identify genes and pathways regulated by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwell migration assays were used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of TWEAK/Fn14 during neointimal hyperplasia. FINDINGS: TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment method, we found a functional module involved in cell proliferation defined as the minimal network connecting top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors (p15lNK4B) mRNA and protein expression. Downregulation of p15INK4B induced by TWEAK was mediated by mitogen-activated protein kinase ERK and Akt activation. Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15INK4B expression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohistochemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries. INTERPRETATION: Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for treating in-stent restenosis. FUND: ISCiii-FEDER, CIBERCV and CIBERDEM.


Subject(s)
Angioplasty/adverse effects , Coronary Restenosis/etiology , Coronary Restenosis/metabolism , Cytokine TWEAK/metabolism , Signal Transduction/drug effects , TWEAK Receptor/metabolism , Animals , Biomarkers , Cell Movement , Cell Proliferation , Coronary Restenosis/pathology , Disease Models, Animal , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Immunohistochemistry , Mice , Mice, Knockout , Models, Biological , Myocytes, Smooth Muscle/metabolism , Postoperative Complications , Tunica Intima/metabolism , Tunica Intima/pathology
9.
PLoS Biol ; 17(5): e3000301, 2019 05.
Article in English | MEDLINE | ID: mdl-31150375

ABSTRACT

Chaperone-mediated autophagy (CMA) contributes to the lysosomal degradation of a selective subset of proteins. Selectivity lies in the chaperone heat shock cognate 71 kDa protein (HSC70) recognizing a pentapeptide motif (KFERQ-like motif) in the protein sequence essential for subsequent targeting and degradation of CMA substrates in lysosomes. Interest in CMA is growing due to its recently identified regulatory roles in metabolism, differentiation, cell cycle, and its malfunctioning in aging and conditions such as cancer, neurodegeneration, or diabetes. Identification of the subset of the proteome amenable to CMA degradation could further expand our understanding of the pathophysiological relevance of this form of autophagy. To that effect, we have performed an in silico screen for KFERQ-like motifs across proteomes of several species. We have found that KFERQ-like motifs are more frequently located in solvent-exposed regions of proteins, and that the position of acidic and hydrophobic residues in the motif plays the most important role in motif construction. Cross-species comparison of proteomes revealed higher motif conservation in CMA-proficient species. The tools developed in this work have also allowed us to analyze the enrichment of motif-containing proteins in biological processes on an unprecedented scale and discover a previously unknown association between the type and combination of KFERQ-like motifs in proteins and their participation in specific biological processes. To facilitate further analysis by the scientific community, we have developed a free web-based resource (KFERQ finder) for direct identification of KFERQ-like motifs in any protein sequence. This resource will contribute to accelerating understanding of the physiological relevance of CMA.


Subject(s)
Amino Acid Motifs , Chaperone-Mediated Autophagy , Proteome/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Drosophila melanogaster/genetics , Evolution, Molecular , Humans , Mice , NIH 3T3 Cells , Proteome/chemistry , Saccharomyces cerevisiae/genetics
10.
J Clin Endocrinol Metab ; 103(10): 3678-3687, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30113675

ABSTRACT

Context: Autoimmune thyroid diseases (AITDs) arise from complex interactions among genetic, epigenetic, and environmental factors. Thyroglobulin (TG) is a major susceptibility gene for both Graves disease and Hashimoto thyroiditis. Interferon-α (IFNα), a cytokine secreted during viral infections, has emerged as a key trigger of AITD. We have shown that IFNα upregulates TG transcription; however, how the upregulation of TG transcription by IFNα triggers AITD is still unknown. Objective: To evaluate how IFNα triggers AITD by testing its effects on TG processing. Design: We exposed human thyroid cells to IFNα and evaluated its effects on TG expression and processing. Results: Human thyroid cells exposed to INFα had increased levels of TG mRNA but reduced TG protein levels, indicating TG protein degradation. IFNα induced endoplasmic reticulum stress, but surprisingly, neither the use of chemical chaperones nor proteasome inhibitor prevented IFNα-induced TG degradation. IFNα also increased LysoTracker staining and autophagy flux measured by net light chain 3 (LC3)-II and p62 fluxes. In addition, expression of autophagy markers LC3 and autophagy-related gene 5 was higher in thyroid tissues from patients with AITD. Finally, blocking lysosomal degradation prevented IFNα-induced degradation of TG. Conclusion: We have shown in this study IFNα-induced lysosomal-dependent degradation of TG in human thyroid cells. Our findings suggest that during viral infections, local thyroidal IFNα production can lead to lysosomal TG degradation, releasing pathogenic TG peptides that can trigger AITD.


Subject(s)
Autoimmune Diseases/chemically induced , Autophagy , Endoplasmic Reticulum Stress/drug effects , Interferon-alpha/adverse effects , Lysosomes/metabolism , Thyroglobulin/metabolism , Thyroid Diseases/chemically induced , Antiviral Agents/adverse effects , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Humans , Proteolysis , Thyroglobulin/genetics , Thyroid Diseases/metabolism , Thyroid Diseases/pathology
11.
Front Pharmacol ; 9: 819, 2018.
Article in English | MEDLINE | ID: mdl-30108504

ABSTRACT

Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2'-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta. In vitro, Nrf2 activation by tBHQ suppressed cytokine-induced expression of pro-inflammatory and oxidative stress genes, altered macrophage phenotypes, and promoted autophagic activity. Our results reinforce pharmacological Nrf2 activation as a promising atheroprotective approach in diabetes, according to the plethora of cytoprotective mechanisms involved in the resolution of inflammation and oxidative stress, and restoring autophagy.

13.
Circ Res ; 122(4): 568-582, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29301854

ABSTRACT

RATIONALE: Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE: To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS: Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS: These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Apolipoprotein B-100/metabolism , Autophagy , Proteolysis , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line, Tumor , Cells, Cultured , Hepatocytes/metabolism , Humans , Mice , Rats , Secretory Pathway
14.
Cell Rep ; 19(13): 2743-2755, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28658622

ABSTRACT

Macrophages perform critical functions in both innate immunity and cholesterol metabolism. Here, we report that activation of Toll-like receptor 4 (TLR4) in macrophages causes lanosterol, the first sterol intermediate in the cholesterol biosynthetic pathway, to accumulate. This effect is due to type I interferon (IFN)-dependent histone deacetylase 1 (HDAC1) transcriptional repression of lanosterol-14α-demethylase, the gene product of Cyp51A1. Lanosterol accumulation in macrophages, because of either treatment with ketoconazole or induced conditional disruption of Cyp51A1 in mouse macrophages in vitro, decreases IFNß-mediated signal transducer and activator of transcription (STAT)1-STAT2 activation and IFNß-stimulated gene expression. These effects translate into increased survival to endotoxemic shock by reducing cytokine secretion. In addition, lanosterol accumulation increases membrane fluidity and ROS production, thus potentiating phagocytosis and the ability to kill bacteria. This improves resistance of mice to Listeria monocytogenes infection by increasing bacterial clearance in the spleen and liver. Overall, our data indicate that lanosterol is an endogenous selective regulator of macrophage immunity.


Subject(s)
Lanosterol/immunology , Macrophages/immunology , Toll-Like Receptor 4/immunology , Animals , Down-Regulation , Female , Gene Knockout Techniques , Humans , Immunity, Innate/drug effects , Lanosterol/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sterol 14-Demethylase/immunology
16.
Nat Commun ; 7: 12313, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27460411

ABSTRACT

Lipid accumulation in macrophages has profound effects on macrophage gene expression and contributes to the development of atherosclerosis. Here, we report that angiopoietin-like protein 4 (ANGPTL4) is the most highly upregulated gene in foamy macrophages and it's absence in haematopoietic cells results in larger atherosclerotic plaques, characterized by bigger necrotic core areas and increased macrophage apoptosis. Furthermore, hyperlipidemic mice deficient in haematopoietic ANGPTL4 have higher blood leukocyte counts, which is associated with an increase in the common myeloid progenitor (CMP) population. ANGPTL4-deficient CMPs have higher lipid raft content, are more proliferative and less apoptotic compared with the wild-type (WT) CMPs. Finally, we observe that ANGPTL4 deficiency in macrophages promotes foam cell formation by enhancing CD36 expression and reducing ABCA1 localization in the cell surface. Altogether, these findings demonstrate that haematopoietic ANGPTL4 deficiency increases atherogenesis through regulating myeloid progenitor cell expansion and differentiation, foam cell formation and vascular inflammation.


Subject(s)
Angiopoietin-Like Protein 4/deficiency , Atherosclerosis/metabolism , Atherosclerosis/pathology , Disease Progression , Hematopoietic Stem Cells/metabolism , Monocytes/metabolism , Angiopoietin-Like Protein 4/metabolism , Animals , Apoptosis , Atherosclerosis/complications , Bone Marrow Transplantation , Cell Proliferation , Cell Survival , Foam Cells/metabolism , Humans , Inflammation/complications , Inflammation/pathology , Leukocytosis/complications , Leukocytosis/pathology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Myeloid Progenitor Cells/metabolism , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
17.
Cell Metab ; 23(6): 1093-1112, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27304509

ABSTRACT

Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.


Subject(s)
Aging/metabolism , Energy Intake , Sex Characteristics , Aging/genetics , Animals , Autophagy/genetics , Biomarkers/metabolism , Caloric Restriction , Cluster Analysis , Energy Intake/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Glucose/metabolism , Homeostasis/genetics , Hydrogen Sulfide/metabolism , Islets of Langerhans/anatomy & histology , Liver/metabolism , Liver/ultrastructure , Longevity/genetics , Longevity/physiology , Male , Metabolome , Metabolomics , Mice , Mice, Inbred Strains , Mitochondria/metabolism , Phenotype , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
18.
Gastroenterology ; 150(2): 328-39, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26453774

ABSTRACT

Intracellular components must be recycled for cells to maintain energy and ensure quality control of proteins and organelles. Autophagy is a highly conserved recycling process that involves degradation of cellular constituents in lysosomes. Although autophagy regulates a number of cell functions, it was first found to maintain energy balance in liver cells. As our understanding of autophagy has increased, we have found its connections to energy regulation in liver cells to be tight and complex. We review 3 mechanisms by which hepatic autophagy monitors and regulates cellular metabolism. Autophagy provides essential components (amino acids, lipids, and carbohydrates) required to meet the cell's energy needs, and it also regulates energy supply by controlling the number, quality, and dynamics of the mitochondria. Finally, autophagy also modulates levels of enzymes in metabolic pathways. In light of the multiple ways in which autophagy participates to control liver metabolism, it is no surprise that dysregulation of autophagy has been associated with metabolic diseases such as obesity, diabetes, or metabolic syndrome, as well as liver-specific disorders such as fatty liver, nonalcoholic steatohepatitis, and hepatocellular carcinoma. We discuss some of these connections and how hepatic autophagy might serve as a therapeutic target in common metabolic disorders.


Subject(s)
Autophagy , Energy Metabolism , Liver/metabolism , Lysosomes/metabolism , Mitochondria, Liver/metabolism , Animals , Humans , Liver/pathology , Lysosomes/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mitochondria, Liver/pathology , Mitochondrial Dynamics
19.
Cardiovasc Res ; 108(1): 139-47, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26224570

ABSTRACT

AIM: The interaction between TNF-like weak inducer of apoptosis (TWEAK, Tnfsf12) and the receptor, fibroblast growth factor-inducible 14 (Fn14), regulates vascular damage through different mechanisms, including inflammation. Oxidative stress plays a major role in inflammation and the development of atherosclerosis, but the relationship between TWEAK and oxidative stress is, however, poorly understood. METHODS AND RESULTS: In this study, we found that TWEAK and Fn14 are co-localized with the NADPH subunits, p22phox and Nox2, in human advanced atherosclerotic plaques. Using primary human macrophages and a murine macrophage cell line, we demonstrate that TWEAK promotes ROS production and enhances NADPH oxidase activity. Hence, we show a direct involvement of the TWEAK-Fn14 axis in oxidative stress, as genetic silencing of Fn14 or Nox2 abrogates the TWEAK-induced ROS production. Furthermore, our results point at Rac1 as an upstream mediator of TWEAK during oxidative stress. Finally, using an in vivo murine model we confirmed the major role of TWEAK in oxidative stress, as genetic silencing of Tnfsf12 in an ApoE(-/-) background reduces the number of DHE and 8-hydroxydeoxyguanosine-positive macrophages by 50%. CONCLUSIONS: Our results suggest that TWEAK regulates vascular damage by stimulating ROS production in an Nox2-dependent manner. These new insights into the TWEAK/Fn14 axis underline their potential use as therapeutic targets in atherosclerosis.


Subject(s)
Macrophages/metabolism , NADPH Oxidases/physiology , Oxidative Stress , Receptors, Tumor Necrosis Factor/physiology , Tumor Necrosis Factors/physiology , Animals , Carotid Artery Diseases/metabolism , Cells, Cultured , Cytokine TWEAK , Enzyme Activation , Glutathione/analysis , Humans , Mice , TWEAK Receptor , rac1 GTP-Binding Protein/physiology
20.
Diabetes ; 64(10): 3600-13, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116697

ABSTRACT

Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.


Subject(s)
Atherosclerosis/metabolism , Diabetic Nephropathies/metabolism , HSP90 Heat-Shock Proteins/metabolism , NF-kappa B/metabolism , STAT Transcription Factors/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Benzoquinones/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Gene Expression Regulation/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/therapeutic use , Lethal Dose 50 , Mice , Mice, Knockout , NF-kappa B/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , STAT Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL