Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
BMJ Open ; 14(8): e084686, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142677

ABSTRACT

INTRODUCTION: The cornerstone in the management of type 2 diabetes (T2D) is lifestyle modification including a healthy diet, typically one in which carbohydrate provides 45%-60% of total energy intake (E%). Nevertheless, systematic reviews and meta-analyses of trials with low carbohydrate diets (which are increased in protein and/or fat) for T2D have found improved glycaemic control in the first months relative to comparator diets with higher carbohydrate content. Studies lasting ≥1 year are inconclusive, which could be due to decreased long-term dietary adherence. We hypothesise that glucometabolic benefits can be achieved following 12 months of carbohydrate-restricted dieting, by maximising dietary adherence through delivery of meal kits, containing fresh, high-quality ingredients for breakfast, dinner and snacks, combined with nutrition education and counselling. METHODS AND ANALYSIS: This protocol describes a 12-month investigator-initiated randomised controlled, open-label, superiority trial with two parallel groups that will examine the effect of a carbohydrate-reduced high-protein (CRHP) diet compared with a conventional diabetes (CD) diet on glucometabolic control (change in glycated haemoglobin being the primary outcome) in 100 individuals with T2D and body mass index (BMI) >25 kg/m2. Participants will be randomised 1:1 to receive either the CRHP or the CD diet (comprised 30/50 E% from carbohydrate, 30/17 E% from protein and 40/33 E% from fat, respectively) for 12 months delivered as meal kits, containing foods covering more than two-thirds of the participants' estimated daily energy requirements for weight maintenance. Adherence to the allocated diets will be reinforced by monthly sessions of nutrition education and counselling from registered clinical dietitians. ETHICS AND DISSEMINATION: The trial has been approved by the National Committee on Health Research Ethics of the Capital Region of Denmark. The trial will be conducted in accordance with the Declaration of Helsinki. Results will be submitted for publication in international peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER: NCT05330247. PROTOCOL VERSION: The trial protocol was approved on 9 March 2022 (study number: H-21057605). The latest version of the protocol, described in this manuscript, was approved on 23 June 2023.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diet therapy , Denmark , Randomized Controlled Trials as Topic , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Meals , Male , Blood Glucose/metabolism , Blood Glucose/analysis , Female , Adult , Diet, High-Protein/methods , Diet, Carbohydrate-Restricted/methods , Middle Aged , Diet, High-Protein Low-Carbohydrate/methods , Scandinavians and Nordic People
2.
Diabetes Obes Metab ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192527

ABSTRACT

AIM: To test the effect of the glucagon-like peptide-1 receptor agonist, liraglutide, on residual beta-cell function in adults with newly diagnosed type 1 diabetes. MATERIALS AND METHODS: In a multicentre, double-blind, parallel-group trial, adults with newly diagnosed type 1 diabetes and stimulated C-peptide of more than 0.2 nmol/L were randomized (1:1) to 1.8-mg liraglutide (Victoza) or placebo once daily for 52 weeks with 6 weeks of follow-up with only insulin treatment. The primary endpoint was the between-group difference in C-peptide area under the curve (AUC) following a liquid mixed-meal test after 52 weeks of treatment. RESULTS: Sixty-eight individuals were randomized. After 52 weeks, the 4-hour AUC C-peptide response was maintained with liraglutide, but decreased with placebo (P = .002). Six weeks after end-of-treatment, C-peptide AUCs were similar for liraglutide and placebo. The average required total daily insulin dose decreased from 0.30 to 0.23 units/kg/day with liraglutide, but increased from 0.29 to 0.43 units/kg/day in the placebo group at week 52 (P < .001). Time without the need for insulin treatment was observed in 13 versus two patients and lasted for 22 weeks (from 3 to 52 weeks) versus 6 weeks (from 4 to 8 weeks) on average for liraglutide and placebo, respectively. Patients treated with liraglutide had fewer episodes of hypoglycaemia compared with placebo-treated patients. The adverse events with liraglutide were predominantly gastrointestinal and transient. CONCLUSIONS: Treatment with liraglutide improves residual beta-cell function and reduces the dose of insulin during the first year after diagnosis. Beta-cell function was similar at 6 weeks postliraglutide treatment.

3.
Article in English | MEDLINE | ID: mdl-39082900

ABSTRACT

Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and three months after SG. Twelve participants scheduled for SG were included. Before and three months after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 minutes prior to meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted three months after surgery. Both before and after SG, postprandial glucose concentrations increased dose-dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of ß-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. Ghrelin infusion increases postprandial plasma glucose concentrations and impairs ß-cell function before and after SG, but has no effect on ad libitum meal intake. The improved glycemic control after SG may in part be due to the permanently lower concentration of ghrelin following this procedure.

4.
Diabetes ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976454

ABSTRACT

Increased plasma levels of glucagon (hyperglucagonaemia) promote diabetes development but is also observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This may reflect hepatic glucagon resistance towards amino acid catabolism. A clinical test for measuring glucagon resistance has not been validated. We evaluated our glucagon sensitivity (GLUSENTIC) test, consisting of two study days: a glucagon injection and measurements of plasma amino acids, and an infusion of mixed amino acids and subsequent calculation of the GLUSENTIC index (primary outcome measure) from measurements of glucagon and amino acids. To distinguish glucagon-dependent from insulin-dependent actions on amino acid metabolism, we also studied patients with type 1 diabetes (T1D). The delta-decline in total amino acids was 49% lower in MASLD following exogenous glucagon (p=0.01), and the calculated GLUSENTIC index was 34% lower in MASLD (p<0.0001), but not T1D (p>0.99). In contrast, glucagon-induced glucose increments were similar in controls and MASLD (p=0.41). The GLUSENTIC test and index may be used to measure glucagon resistance in individuals with obesity and MASLD.

5.
Cell Rep Med ; 5(7): 101629, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959886

ABSTRACT

Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.


Subject(s)
Adiponectin , Fibroblast Growth Factors , Leptin , Sphingolipids , Weight Loss , Adult , Female , Humans , Male , Middle Aged , Adiponectin/blood , Adiponectin/metabolism , Ceramides/metabolism , Ceramides/blood , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/blood , Leptin/blood , Leptin/metabolism , Obesity/metabolism , Obesity/blood , Sphingolipids/metabolism , Sphingolipids/blood
6.
Am J Clin Nutr ; 120(2): 283-293, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914224

ABSTRACT

BACKGROUND: Intrahepatic triacylglycerol (liver TG) content is associated with hepatic insulin resistance and dyslipidemia. Liver TG content can be modulated within days under hypocaloric conditions. OBJECTIVES: We hypothesized that 4 d of eucaloric low-carbohydrate/high-fat (LC) intake would decrease liver TG content, whereas a high-carbohydrate/low-fat (HC) intake would increase liver TG content, and further that alterations in liver TG would be linked to dynamic changes in hepatic glucose and lipid metabolism. METHODS: A randomized crossover trial in males with 4 d + 4 d of LC and HC, respectively, with ≥2 wk of washout. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure liver TG content, with metabolic testing before and after intake of an LC diet (11E% carbohydrate corresponding to 102 ± 12 {mean ± standard deviation [SD]) g/d, 70E% fat} and an HC diet (65E% carbohydrate corresponding to 537 ± 56 g/d, 16E% fat). Stable [6,6-2H2]-glucose and [1,1,2,3,3-D5]-glycerol tracer infusions combined with hyperinsulinemic-euglycemic clamps and indirect calorimetry were used to measure rates of hepatic glucose production and lipolysis, whole-body insulin sensitivity and substrate oxidation. RESULTS: Eleven normoglycemic males with overweight or obesity (BMI 31.6 ± 3.7 kg/m2) completed both diets. The LC diet reduced liver TG content by 35.3% (95% confidence interval: -46.6, -24.1) from 4.9% [2.4-11.0] (median interquartile range) to 2.9% [1.4-6.9], whereas there was no change after the HC diet. After the LC diet, fasting whole-body fat oxidation and plasma beta-hydroxybutyrate concentration increased, whereas markers of de novo lipogenesis (DNL) diminished. Fasting plasma TG and insulin concentrations were lowered and the hepatic insulin sensitivity index increased after LC. Peripheral glucose disposal was unchanged. CONCLUSIONS: Reduced carbohydrate and increased fat intake for 4 d induced a marked reduction in liver TG content and increased hepatic insulin sensitivity. Increased rates of fat oxidation and ketogenesis combined with lower rates of DNL are suggested to be responsible for lowering liver TG. This trial was registered at clinicaltrials.gov as NCT04581421.


Subject(s)
Cross-Over Studies , Liver , Obesity , Overweight , Triglycerides , Humans , Male , Triglycerides/metabolism , Liver/metabolism , Adult , Overweight/metabolism , Overweight/diet therapy , Obesity/metabolism , Obesity/diet therapy , Diet, Carbohydrate-Restricted , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Young Adult , Middle Aged , Insulin Resistance
7.
JAMA Netw Open ; 7(6): e2416775, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38916894

ABSTRACT

Importance: A major concern with weight loss is concomitant bone loss. Exercise and glucagon-like peptide-1 receptor agonists (GLP-1RAs) represent weight loss strategies that may protect bone mass despite weight loss. Objective: To investigate bone health at clinically relevant sites (hip, spine, and forearm) after diet-induced weight loss followed by a 1-year intervention with exercise, liraglutide, or both combined. Design, Setting, and Participants: This study was a predefined secondary analysis of a randomized clinical trial conducted between August 2016 and November 2019 at the University of Copenhagen and Hvidovre Hospital in Denmark. Eligible participants included adults aged 18 to 65 years with obesity (body mass index of 32-43) and without diabetes. Data analysis was conducted from March to April 2023, with additional analysis in February 2024 during revision. Interventions: After an 8-week low-calorie diet (800 kcal/day), participants were randomized to 1 of 4 groups for 52 weeks: a moderate- to vigorous-intensity exercise program (exercise alone), 3.0 mg daily of the GLP-1 RA liraglutide (liraglutide alone), the combination, or placebo. Main Outcomes and Measures: The primary outcome was change in site-specific bone mineral density (BMD) at the hip, lumbar spine, and distal forearm from before the low-calorie diet to the end of treatment, measured by dual-energy x-ray absorptiometry in the intention-to-treat population. Results: In total, 195 participants (mean [SD] age, 42.84 [11.87] years; 124 female [64%] and 71 male [36%]; mean [SD] BMI, 37.00 [2.92]) were randomized, with 48 participants in the exercise group, 49 participants in the liraglutide group, 49 participants in the combination group, and 49 participants in the placebo group. The total estimated mean change in weight losses during the study was 7.03 kg (95% CI, 4.25-9.80 kg) in the placebo group, 11.19 kg (95% CI, 8.40-13.99 kg) in the exercise group, 13.74 kg (95% CI, 11.04-16.44 kg) in the liraglutide group, and 16.88 kg (95% CI, 14.23-19.54 kg) in the combination group. In the combination group, BMD was unchanged compared with the placebo group at the hip (mean change, -0.006 g/cm2; 95% CI, -0.017 to 0.004 g/cm2; P = .24) and lumbar spine (-0.010 g/cm2; 95% CI, -0.025 to 0.005 g/cm2; P = .20). Compared with the exercise group, BMD decreased for the liraglutide group at the hip (mean change, -0.013 g/cm2; 95% CI, -0.024 to -0.001 g/cm2; P = .03) and spine (mean change, -0.016 g/cm2; 95% CI, -0.032 to -0.001 g/cm2; P = .04). Conclusions and Relevance: In this randomized clinical trial, the combination of exercise and GLP-1RA (liraglutide) was the most effective weight loss strategy while preserving bone health. Liraglutide treatment alone reduced BMD at clinically relevant sites more than exercise alone despite similar weight loss. Trial Registration: EudraCT: 2015-005585-32.


Subject(s)
Bone Density , Exercise , Glucagon-Like Peptide-1 Receptor , Liraglutide , Humans , Female , Male , Middle Aged , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Bone Density/drug effects , Adult , Obesity/drug therapy , Obesity/therapy , Weight Loss/drug effects , Hypoglycemic Agents/therapeutic use , Aged , Combined Modality Therapy , Denmark
8.
Elife ; 122024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829205

ABSTRACT

Background: Comorbidity with type 2 diabetes (T2D) results in worsening of cancer-specific and overall prognosis in colorectal cancer (CRC) patients. The treatment of CRC per se may be diabetogenic. We assessed the impact of different types of surgical cancer resections and oncological treatment on risk of T2D development in CRC patients. Methods: We developed a population-based cohort study including all Danish CRC patients, who had undergone CRC surgery between 2001 and 2018. Using nationwide register data, we identified and followed patients from date of surgery and until new onset of T2D, death, or end of follow-up. Results: In total, 46,373 CRC patients were included and divided into six groups according to type of surgical resection: 10,566 Right-No-Chemo (23%), 4645 Right-Chemo (10%), 10,151 Left-No-Chemo (22%), 5257 Left-Chemo (11%), 9618 Rectal-No-Chemo (21%), and 6136 Rectal-Chemo (13%). During 245,466 person-years of follow-up, 2556 patients developed T2D. The incidence rate (IR) of T2D was highest in the Left-Chemo group 11.3 (95% CI: 10.4-12.2) per 1000 person-years and lowest in the Rectal-No-Chemo group 9.6 (95% CI: 8.8-10.4). Between-group unadjusted hazard ratio (HR) of developing T2D was similar and non-significant. In the adjusted analysis, Rectal-No-Chemo was associated with lower T2D risk (HR 0.86 [95% CI 0.75-0.98]) compared to Right-No-Chemo.For all six groups, an increased level of body mass index (BMI) resulted in a nearly twofold increased risk of developing T2D. Conclusions: This study suggests that postoperative T2D screening should be prioritised in CRC survivors with overweight/obesity regardless of type of CRC treatment applied. Funding: The Novo Nordisk Foundation (NNF17SA0031406); TrygFonden (101390; 20045; 125132).


Subject(s)
Colorectal Neoplasms , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Denmark/epidemiology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/surgery , Male , Female , Aged , Middle Aged , Cohort Studies , Risk Factors , Incidence , Aged, 80 and over , Adult , Registries
9.
Metabolism ; 156: 155915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631460

ABSTRACT

INTRODUCTION: Glucagon receptor agonism is currently explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The metabolic effects of glucagon receptor agonism may in part be mediated by increases in circulating levels of Fibroblast Growth Factor 21 (FGF21) and Growth Differentiation Factor 15 (GDF15). The effect of glucagon agonism on FGF21 and GDF15 levels remains uncertain, especially in the context of elevated insulin levels commonly observed in metabolic diseases. METHODS: We investigated the effect of a single bolus of glucagon and a continuous infusion of glucagon on plasma concentrations of FGF21 and GDF15 in conditions of endogenous low or high insulin levels. The studies included individuals with overweight with and without MASLD, healthy controls (CON) and individuals with type 1 diabetes (T1D). The direct effect of glucagon on FGF21 and GDF15 was evaluated using our in-house developed isolated perfused mouse liver model. RESULTS: FGF21 and GDF15 correlated with plasma levels of insulin, but not glucagon, and their secretion was highly increased in MASLD compared with CON and T1D. Furthermore, FGF21 levels in individuals with overweight with or without MASLD did not increase after glucagon stimulation when insulin levels were kept constant. FGF21 and GDF15 levels were unaffected by direct stimulation with glucagon in the isolated perfused mouse liver. CONCLUSION: The glucagon-induced secretion of FGF21 and GDF15 is augmented in MASLD and may depend on insulin. Thus, glucagon receptor agonism may augment its metabolic benefits in patients with MASLD through enhanced secretion of FGF21 and GDF15.


Subject(s)
Fibroblast Growth Factors , Glucagon , Growth Differentiation Factor 15 , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/blood , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Glucagon/blood , Glucagon/metabolism , Animals , Humans , Mice , Male , Female , Adult , Insulin/pharmacology , Insulin/blood , Insulin/metabolism , Middle Aged , Liver/metabolism , Liver/drug effects , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Obesity/metabolism , Mice, Inbred C57BL , Fatty Liver/metabolism , Overweight/metabolism
10.
BMJ Open ; 14(4): e080232, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38658012

ABSTRACT

INTRODUCTION: Perioperative glycaemic control is important. However, the complexity of guidelines for perioperative diabetes management is complicated due to different and novel antihyperglycaemic medications, limited procedure-specific data and lack of data from implemented fast-track regimens which otherwise are known to reduce morbidity and glucose homeostasis disturbances. Consequently, outcome in patients with diabetes mellitus (DM) after surgery and the influence of perioperative diabetes management on postoperative recovery remains poorly understood. METHODS AND ANALYSIS: A prospective observational multicentre study involving 8 arthroplasty centres across Denmark with a documented implemented fast-track programme (median length of hospitalisation (LOS) 1 day). We will collect detailed perioperative data including preoperative haemoglobin A1c and antidiabetic treatment in 1400 unselected consecutive patients with DM undergoing hip and knee arthroplasty from September 2022 to December 2025, enrolled after consent. Follow-up duration is 90 days after surgery. The primary outcome is the proportion of patients with DM with LOS >4 days and 90-day readmission rate after fast-track total hip arthroplasty (THA), total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA). The secondary outcome is the association between perioperative diabetes treatment and LOS >2 days, 90-day readmission rate, other patient demographics and Comprehensive Complication Index for patients with DM after THA/TKA/UKA in a fast-track regimen. ETHICS AND DISSEMINATION: The study will follow the principles of the Declaration of Helsinki and ICH-Good Clinical Practice guideline. Ethical approval was not necessary as this is a non-interventional observational study on current practice. The trial is registered in the Region of Southern Denmark and on ClinicalTrials.gov. The main results and all substudies of this trial will be published in peer-reviewed international medical journals. TRIAL REGISTRATION NUMBER: NCT05613439.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Humans , Denmark , Diabetes Mellitus , Glycated Hemoglobin/analysis , Hypoglycemic Agents/therapeutic use , Length of Stay/statistics & numerical data , Multicenter Studies as Topic , Observational Studies as Topic , Patient Readmission/statistics & numerical data , Postoperative Complications , Prospective Studies , Risk Factors
11.
Diabet Med ; 41(6): e15320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551152

ABSTRACT

INTRODUCTION: Post-bariatric hypoglycaemia (PBH) is a rare yet disabling clinical condition, mostly reported after Roux-en-Y gastric bypass (RYGB) surgery. RYGB is one of the most widely used and effective bariatric procedures. The pathophysiology of PBH remains unclear, and treatment options are limited in effectiveness and/or carry significant side effects. Acarbose slows carbohydrates digestion and absorption and is generally considered first-line pharmacological treatment for PBH but its gastrointestinal side effects limit patient compliance. Canagliflozin inhibits intestinal and renal sodium-dependent glucose absorption and reduces postprandial excursions of glucose, insulin and incretins after RYGB - effects that could be beneficial in ameliorating PBH. AIMS: The trial aims to investigate how blood glucose levels are affected during daily living in subjects with PBH during treatment with canagliflozin or acarbose compared with placebo, and to study the meal-induced entero-endocrine mechanisms implied in the treatment responses. METHODS: In a double-blinded, randomized, crossover clinical trial, HypoBar I will investigate the effectiveness in reducing the risk of PBH, safety, ambulatory glucose profile and entero-endocrine responses when PBH is treated with canagliflozin 300 mg twice daily during a 4-week intervention period, compared with acarbose 50 mg thrice daily or placebo. ETHICS AND DISSEMINATION: HypoBar I is approved by the Local regulatory entities. Results will be published in peer-reviewed journals. CONCLUSION: If effective, well-tolerated and safe, canagliflozin could be a novel treatment for people with PBH. HypoBar I might also unravel new mechanisms underlying PBH, potentially identifying new treatment targets. TRIAL REGISTRATION: EudraCT number 2022-000157-87.


Subject(s)
Acarbose , Canagliflozin , Hypoglycemia , Adult , Female , Humans , Male , Middle Aged , Young Adult , Acarbose/therapeutic use , Blood Glucose/metabolism , Blood Glucose/drug effects , Canagliflozin/therapeutic use , Cross-Over Studies , Double-Blind Method , Gastric Bypass/adverse effects , Hypoglycemia/prevention & control , Hypoglycemia/chemically induced , Hypoglycemic Agents/therapeutic use , Postoperative Complications/drug therapy , Postoperative Complications/prevention & control , Randomized Controlled Trials as Topic , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
12.
Peptides ; 176: 171199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552903

ABSTRACT

It has been known since 2005 that the secretion of several gut hormones changes radically after gastric bypass operations and, although more moderately, after sleeve gastrectomy but not after gastric banding. It has therefore been speculated that increased secretion of particularly GLP-1 and Peptide YY (PYY), which both inhibit appetite and food intake, may be involved in the weight loss effects of surgery and for improvements in glucose tolerance. Experiments involving inhibition of hormone secretion with somatostatin, blockade of their actions with antagonists, or blockade of hormone formation/activation support this notion. However, differences between results of bypass and sleeve operations indicate that distinct mechanisms may also be involved. Although the reductions in ghrelin secretion after sleeve gastrectomy would seem to provide an obvious explanation, experiments with restoration of ghrelin levels pointed towards effects on insulin secretion and glucose tolerance rather than on food intake. It seems clear that changes in GLP-1 secretion are important for insulin secretion after bypass and appear to be responsible for postbariatric hypoglycemia in glucose-tolerant individuals; however, with time the improvements in insulin sensitivity, which in turn are secondary to the weight loss, may be more important. Changes in bile acid metabolism do not seem to be of particular importance in humans.


Subject(s)
Gastrectomy , Gastric Bypass , Glucagon-Like Peptide 1 , Peptide YY , Weight Loss , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Gastrectomy/methods , Gastrointestinal Hormones/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Peptide YY/metabolism
13.
EClinicalMedicine ; 69: 102475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38544798

ABSTRACT

Background: New obesity medications result in large weight losses. However, long-term adherence in a real-world setting is challenging, and termination of obesity medication results in weight regain towards pre-treatment body weight. Therefore, we investigated whether weight loss and improved body composition are sustained better at 1 year after termination of active treatment with glucagon-like peptide-1 (GLP-1) receptor agonist, supervised exercise program, or both combined for 1 year. Methods: We conducted a post-treatment study in extension of a randomised, controlled trial in Copenhagen. Adults with obesity (aged 18-65 years and initial body mass index 32-43 kg/m2) completed an eight-week low-calorie diet-induced weight loss of 13.1 kg (week -8 to 0) and were randomly allocated (1:1:1:1) to one-year weight loss maintenance (week 0-52) with either supervised exercise, the GLP-1 receptor agonist once-daily subcutaneous liraglutide 3.0 mg, the combination of exercise and liraglutide, or placebo. 166 Participants completed the weight loss maintenance phase. All randomised participants were invited to participate in the post-treatment study with outcome assessments one year after treatment termination, at week 104. The primary outcome of the post-treatment assessment was change in body weight from after the initial weight loss (at randomisation, week 0) to one year after treatment termination (week 104) in the intention-to-treat population. The secondary outcome was change in body-fat percentage (week 0-104). The study is registered with EudraCT, 2015-005585-32, and with ClinicalTrials.gov, NCT04122716. Findings: Between Dec 17, 2018, and Dec 17, 2020, 109 participants attended the post-treatment study. From randomisation to one year after termination of combined exercise and liraglutide treatment (week 0-104), participants had reduced body weight (-5.1 kg [95% CI -10.0; -0.2]; P = 0.040) and body-fat percentage (-2.3%-points [-4.3 to -0.3]; P = 0.026) compared with after termination of liraglutide alone. More participants who had previously received combination treatment maintained a weight loss of at least 10% of initial body weight one year after treatment termination (week -8 to 104) compared with participants who had previously received placebo (odds ratio [OR] 7.2 [2.4; 21.3]) and liraglutide (OR 4.2 [1.6; 10.8]). More participants who had previously received supervised exercise maintained a weight loss of at least 10% compared with placebo (OR 3.7 [1.2; 11.1]). During the year after termination of treatment (week 52-104), weight regain was 6.0 kg [2.1; 10.0] larger after termination of liraglutide compared with after termination of supervised exercise and 2.5 kg [-1.5 to 6.5] compared with after termination of combination treatment. Interpretation: The addition of supervised exercise to obesity pharmacotherapy seems to improve healthy weight maintenance after treatment termination compared with treatment termination of obesity pharmacotherapy alone. Body weight and body composition were maintained one year after termination of supervised exercise, in contrast to weight regain after termination of treatment with obesity pharmacotherapy alone. Funding: Helsefonden and the Novo Nordisk Foundation.

14.
J Endocr Soc ; 8(4): bvae008, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38379856

ABSTRACT

Context: Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) are increased in type 2 diabetes and are potential regulators of metabolism. The effect of changes in caloric intake and macronutrient composition on their circulating levels in patients with type 2 diabetes are unknown. Objective: To explore the effects of a carbohydrate-reduced high-protein diet with and without a clinically significant weight loss on circulating levels of FGF21 and GDF15 in patients with type 2 diabetes. Methods: We measured circulating FGF21 and GDF15 in patients with type 2 diabetes who completed 2 previously published diet interventions. Study 1 randomized 28 subjects to an isocaloric diet in a 6 + 6-week crossover trial consisting of, in random order, a carbohydrate-reduced high-protein (CRHP) or a conventional diabetes (CD) diet. Study 2 randomized 72 subjects to a 6-week hypocaloric diet aiming at a ∼6% weight loss induced by either a CRHP or a CD diet. Fasting plasma FGF21 and GDF15 were measured before and after the interventions in a subset of samples (n = 24 in study 1, n = 66 in study 2). Results: Plasma levels of FGF21 were reduced by 54% in the isocaloric study (P < .05) and 18% in the hypocaloric study (P < .05) in CRHP-treated individuals only. Circulating GDF15 levels increased by 18% (P < .05) following weight loss in combination with a CRHP diet but only in those treated with metformin. Conclusion: The CRHP diet significantly reduced FGF21 in people with type 2 diabetes independent of weight loss, supporting the role of FGF21 as a "nutrient sensor." Combining metformin treatment with carbohydrate restriction and weight loss may provide additional metabolic improvements due to the rise in circulating GDF15.

15.
J Clin Endocrinol Metab ; 109(7): 1773-1780, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38217866

ABSTRACT

CONTEXT: Individuals with type 2 diabetes (T2D) have an increased risk of bone fractures despite normal or increased bone mineral density. The underlying causes are not well understood but may include disturbances in the gut-bone axis, in which both glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are regulators of bone turnover. Thus, in healthy fasting participants, both exogenous GIP and GLP-2 acutely reduce bone resorption. OBJECTIVE: The objective of this study was to investigate the acute effects of subcutaneously administered GIP and GLP-2 on bone turnover in individuals with T2D. METHODS: We included 10 men with T2D. Participants met fasting in the morning on 3 separate test days and were injected subcutaneously with GIP, GLP-2, or placebo in a randomized crossover design. Blood samples were drawn at baseline and regularly after injections. Bone turnover was estimated by circulating levels of collagen type 1 C-terminal telopeptide (CTX), procollagen type 1 N-terminal propeptide (P1NP), sclerostin, and PTH. RESULTS: GIP and GLP-2 significantly reduced CTX to (mean ± SEM) 66 ± 7.8% and 74 ± 5.9% of baseline, respectively, compared with after placebo (P = .001). In addition, P1NP and sclerostin increased acutely after GIP whereas a decrease in P1NP was seen after GLP-2. PTH levels decreased to 67 ± 2.5% of baseline after GLP-2 and to only 86 ± 3.4% after GIP. CONCLUSION: Subcutaneous GIP and GLP-2 affect CTX and P1NP in individuals with T2D to the same extent as previously demonstrated in healthy individuals.


Subject(s)
Bone Remodeling , Cross-Over Studies , Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 2 , Humans , Gastric Inhibitory Polypeptide/blood , Male , Glucagon-Like Peptide 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Bone Remodeling/drug effects , Middle Aged , Aged , Adult , Bone Density/drug effects
16.
Cardiovasc Diabetol ; 23(1): 13, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184612

ABSTRACT

BACKGROUND: Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence of these metabolic changes on cardiac function in patients with T2D. METHODS: In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin (I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treatments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concentrations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data are Mean ± standard error. Between treatment difference (ΔT: E-I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were evaluated using Students' t-test or Wilcoxon signed rank test as appropriate. RESULTS: Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced cardiac diastolic (ΔT: -51 ± 22 ml/s (p < 0.05); ΔE: -33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function (ΔT: -3 ± 1% (p < 0.05); ΔE: -3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin compared to insulin treatment. CONCLUSIONS: Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes. TRIAL REGISTRATION: EudraCT 2017-002101-35, August 2017.


Subject(s)
Atrial Appendage , Diabetes Mellitus, Type 2 , Humans , Insulin , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Cross-Over Studies , Glucose , Fatty Acids , Ketone Bodies
17.
Int J Obes (Lond) ; 48(4): 533-541, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38172335

ABSTRACT

BACKGROUND: Excess abdominal visceral adipose tissue (VAT) is associated with metabolic diseases and poor survival in colon cancer (CC). We assessed the impact of different types of CC surgery on changes in abdominal fat depots. MATERIAL AND METHODS: Computed tomography (CT)-scans performed preoperative and 3 years after CC surgery were analyzed at L3-level for VAT, subcutaneous adipose tissue (SAT) and total adipose tissue (TAT) areas. We assessed changes in VAT, SAT, TAT and VAT/SAT ratio after 3 years and compared the changes between patients who had undergone left-sided and right-sided colonic resection in the total population and in men and women separately. RESULTS: A total of 134 patients with stage I-III CC undergoing cancer surgery were included. Patients who had undergone left-sided colonic resection had after 3 years follow-up a 5% (95% CI: 2-9%, p < 0.01) increase in abdominal VAT, a 4% (95% CI: 2-6%, p < 0.001) increase in SAT and a 5% increase (95% CI: 2-7%, p < 0.01) in TAT. Patients who had undergone right-sided colonic resection had no change in VAT, but a 6% (95% CI: 4-9%, p < 0.001) increase in SAT and a 4% (95% CI: 1-7%, p < 0.01) increase in TAT after 3 years. Stratified by sex, only males undergoing left-sided colonic resection had a significant VAT increase of 6% (95% CI: 2-10%, p < 0.01) after 3 years. CONCLUSION: After 3 years follow-up survivors of CC accumulated abdominal adipose tissue. Notably, those who underwent left-sided colonic resection had increased VAT and SAT, whereas those who underwent right-sided colonic resection demonstrated solely increased SAT.


Subject(s)
Colonic Neoplasms , Obesity, Abdominal , Male , Humans , Female , Obesity, Abdominal/complications , Obesity, Abdominal/diagnostic imaging , Obesity, Abdominal/surgery , Obesity/complications , Obesity/surgery , Obesity/epidemiology , Subcutaneous Fat , Tomography, X-Ray Computed , Colonic Neoplasms/surgery , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/metabolism
18.
Scand J Clin Lab Invest ; 84(1): 16-23, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265854

ABSTRACT

An intravenous glucose-infusion of 0.3 g glucose per Kg body weight was administered over 1 min in nine healthy males with simultaneous blood sampling from the hepatic vein, femoral artery and a peripheral vein. Insulin secretion rates (ISR) were determined by the Eaton method and the ISEC method using C-peptide concentrations from arterial and peripheral venous blood. First phase (0-10 min), second phase (10-60 min), and total insulin secretion (0-60 min) were calculated as the incremental areas (iAUC) above baseline. The primary endpoint was first phase insulin response. The first phase insulin response in artery and venous blood did not differ with the Eaton method (p = 0.25), but was significantly greater with the ISEC method in arterial compared with venous blood (p < 0.05). The first phase insulin responses did not differ between methods in artery (p = 0.73) or venous blood (p = 0.73). The first phase responses of insulin and C-peptide were significant higher in the hepatic vein compared with those in the artery (p < 0.05) and peripheral vein (p < 0.05) but did not differ significantly between the artery compared with the peripheral vein for insulin (p = 0.09) or C-peptide (p = 0.26). Prehepatic insulin secretion rates did not differ between the Eaton and ISEC methods, but with the ISEC method the first phase insulin response was significantly greater in arterial compared with venous blood. The first phase insulin response differs when calculated from plasma insulin or C-peptide and depends on sample sites.


Subject(s)
Glucose , Insulin , Male , Humans , Insulin Secretion , Glucose/pharmacology , C-Peptide , Glucose Tolerance Test , Arteries/metabolism , Blood Glucose , Kinetics
19.
iScience ; 26(11): 108190, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37953952

ABSTRACT

Inhibitors of neprilysin improve glycemia in patients with heart failure and type 2 diabetes (T2D). The effect of weight loss by diet, surgery, or pharmacotherapy on neprilysin activity (NEPa) is unknown. We investigated circulating NEPa and neprilysin protein concentrations in obesity, T2D, metabolic dysfunction-associated steatotic liver disease (MASLD), and following bariatric surgery, or GLP-1-receptor-agonist therapy. NEPa, but not neprilysin protein, was enhanced in obesity, T2D, and MASLD. Notably, MASLD associated with NEPa independently of BMI and HbA1c. NEPa decreased after bariatric surgery with a concurrent increase in OGTT-stimulated GLP-1. Diet-induced weight loss did not affect NEPa, but individuals randomized to 52-week weight maintenance with liraglutide (1.2 mg/day) decreased NEPa, consistent with another study following 6-week liraglutide (3 mg/day). A 90-min GLP-1 infusion did not alter NEPa. Thus, MASLD may drive exaggerated NEPa, and lowered NEPa following bariatric surgery or liraglutide therapy may contribute to the reported improved cardiometabolic effects.

20.
J Endocr Soc ; 7(11): bvad122, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37818402

ABSTRACT

Context: Hyperglucagonemia may develop in type 2 diabetes due to obesity-prone hepatic steatosis (glucagon resistance). Markers of glucagon resistance (including the glucagon-alanine index) improve following diet-induced weight loss, but the partial contribution of lowering hepatic steatosis vs body weight is unknown. Objective: This work aimed to investigate the dependency of body weight loss following a reduction in hepatic steatosis on markers of glucagon resistance in type 2 diabetes. Methods: A post hoc analysis was conducted from 2 previously published randomized controlled trials. We investigated the effect of weight maintenance (study 1: isocaloric feeding) or weight loss (study 2: hypocaloric feeding), both of which induced reductions in hepatic steatosis, on markers of glucagon sensitivity, including the glucagon-alanine index measured using a validated enzyme-linked immunosorbent assay and metabolomics in 94 individuals (n = 28 in study 1; n = 66 in study 2). Individuals with overweight or obesity with type 2 diabetes were randomly assigned to a 6-week conventional diabetes (CD) or carbohydrate-reduced high-protein (CRHP) diet within both isocaloric and hypocaloric feeding-interventions. Results: By design, weight loss was greater after hypocaloric compared to isocaloric feeding, but both diets caused similar reductions in hepatic steatosis, allowing us to investigate the effect of reducing hepatic steatosis with or without a clinically relevant weight loss on markers of glucagon resistance. The glucagon-alanine index improved following hypocaloric, but not isocaloric, feeding, independently of macronutrient composition. Conclusion: Improvements in glucagon resistance may depend on body weight loss in patients with type 2 diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL