Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Future Microbiol ; 19(15): 1309-1320, 2024.
Article in English | MEDLINE | ID: mdl-39101446

ABSTRACT

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms.Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT.Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells.Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.


Subject(s)
Acetylcysteine , Antifungal Agents , Biofilms , Candida , Croton , Itraconazole , Microbial Sensitivity Tests , Oils, Volatile , Croton/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Itraconazole/pharmacology , Antifungal Agents/pharmacology , Acetylcysteine/pharmacology , Biofilms/drug effects , Candida/drug effects , Drug Synergism , Animals , Cell Line , Fluconazole/pharmacology , Cricetinae
2.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38979984

ABSTRACT

Introduction. The development of new antifungal drugs has become a global priority, given the increasing cases of fungal diseases together with the rising resistance to available antifungal drugs. In this scenario, drug repositioning has emerged as an alternative for such development, with advantages such as reduced research time and costs.Gap statement. Propafenone is an antiarrhythmic drug whose antifungal activity is poorly described, being a good candidate for further study.Aim. This study aims to evaluate propafenone activity against different species of Candida spp. to evaluate its combination with standard antifungals, as well as its possible action mechanism.Methodology. To this end, we carried out tests against strains of Candida albicans, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei based on the evaluation of the MIC, minimum fungicidal concentration and tolerance level, along with checkerboard and flow cytometry tests with clinical strains and cell structure analysis by scanning electron microscopy (SEM).Results. The results showed that propafenone has a 50% MIC ranging from 32 to 256 µg ml-1, with fungicidal activity and positive interactions with itraconazole in 83.3% of the strains evaluated. The effects of the treatments observed by SEM were extensive damage to the cell structure, while flow cytometry revealed the apoptotic potential of propafenone against Candida spp.Conclusion. Taken together, these results indicate that propafenone has the potential for repositioning as an antifungal drug.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Propafenone , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Propafenone/pharmacology , Humans , Itraconazole/pharmacology , Drug Synergism , Drug Resistance, Fungal/drug effects , Candidiasis/microbiology , Candidiasis/drug therapy , Drug Repositioning
3.
J Toxicol Environ Health A ; 87(3): 91-107, 2024 02.
Article in English | MEDLINE | ID: mdl-37927232

ABSTRACT

Croton heliotropiifolius Kunth, popularly known as "velame," is a shrub that resides in northeastern Brazil. The essential oil of C. heliotropiifolius contains high concentrations of volatile compounds in the leaves and is widely used in folk medicine for many purposes as an antiseptic, analgesic, sedative, and anti-inflammatory agent. Due to the apparent limited amount of information, the aim of this study was to determine the cytotoxic potential of essential oil extracted from leaves of C. heliotropiifolius, utilizing different human cancer cell lines (HL-60, leukemia; HCT-116, colon; MDA-MB435, melanoma; SF295, glioblastoma) and comparison to murine fibroblast L929 cell line. The chemical characterization of the essential oil revealed the presence of large amounts of monoterpenes and sesquiterpenes, the majority of which were aristolene (22.43%), germacrene D (11.38%), ɣ-terpinene (10.85%), and limonene (10.21%). The essential oil exerted significant cytotoxicity on all cancer cells, with low activity on murine L929 fibroblasts, independent of disruption of cell membranes evidenced by absence of hemolytic activity. The cytotoxicity identified was associated with oxidative stress, which culminated in mitochondrial respiration dysfunction and direct or indirect DNA damage (strand breaks and oxidative damage), triggering cell death via apoptosis. Our findings suggest that extracts of essential oil of C. Heliotropiifolius may be considered as agents to be used therapeutically in treatment of certain cancers.


Subject(s)
Antineoplastic Agents , Croton , Oils, Volatile , Sesquiterpenes , Humans , Animals , Mice , Oils, Volatile/pharmacology , Croton/chemistry , Cell Line, Tumor , Sesquiterpenes/analysis , Plant Leaves/chemistry
4.
J Med Food ; 14(6): 658-63, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21554131

ABSTRACT

Twenty-three honey samples of Apis mellifera L. forged on plants from northeastern Brazil were analyzed to determine total phenolic content, flavonoid content, antioxidant activity, and antiacetylcholinesterase activity. The total phenol content was determined by using the Folin-Ciocalteu method, and the flavonoid content was analyzed using by the aluminum chloride method. The antioxidant activity was evaluated using the diphenyl-1-picrylhydrazyl-scavenging test. Honey samples from Lippia sidoides Cham. (mean [±standard deviation] 50% inhibitory concentration [IC(50)], 4.20±1.07 mg/mL) and Myracrodruon urundeuva Fr. All. (IC(50), 28.27±1.41 mg/mL) showed better antioxidant activity and presented higher total phenol values (108.50±3.52 mg gallic acid equivalents/100 g for L. sidoides and 68.55±1.01 mg gallic acid equivalents/100 g for M. urundeuva). Several honey samples had relevant results on antiacetylcholinesterase assay. The biological activity of honeys is related to their floral origin, and medicinal plants constitute a useful resource for the generation of functional foods.


Subject(s)
Antioxidants/analysis , Cholinesterase Inhibitors/analysis , Flowers/chemistry , Honey/analysis , Phenols/analysis , Animals , Bees , Flavonoids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL