Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 23(10): 1495-1506, 2022 10.
Article in English | MEDLINE | ID: mdl-36151395

ABSTRACT

The immune system can eliminate tumors, but checkpoints enable immune escape. Here, we identify immune evasion mechanisms using genome-scale in vivo CRISPR screens across cancer models treated with immune checkpoint blockade (ICB). We identify immune evasion genes and important immune inhibitory checkpoints conserved across cancers, including the non-classical major histocompatibility complex class I (MHC class I) molecule Qa-1b/HLA-E. Surprisingly, loss of tumor interferon-γ (IFNγ) signaling sensitizes many models to immunity. The immune inhibitory effects of tumor IFN sensing are mediated through two mechanisms. First, tumor upregulation of classical MHC class I inhibits natural killer cells. Second, IFN-induced expression of Qa-1b inhibits CD8+ T cells via the NKG2A/CD94 receptor, which is induced by ICB. Finally, we show that strong IFN signatures are associated with poor response to ICB in individuals with renal cell carcinoma or melanoma. This study reveals that IFN-mediated upregulation of classical and non-classical MHC class I inhibitory checkpoints can facilitate immune escape.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors , Immune Evasion , Interferon-gamma/genetics , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily C
2.
Immunity ; 54(3): 571-585.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33497609

ABSTRACT

CRISPR-Cas9 genome engineering has increased the pace of discovery for immunology and cancer biology, revealing potential therapeutic targets and providing insight into mechanisms underlying resistance to immunotherapy. However, endogenous immune recognition of Cas9 has limited the applicability of CRISPR technologies in vivo. Here, we characterized immune responses against Cas9 and other expressed CRISPR vector components that cause antigen-specific tumor rejection in several mouse cancer models. To avoid unwanted immune recognition, we designed a lentiviral vector system that allowed selective CRISPR antigen removal (SCAR) from tumor cells. The SCAR system reversed immune-mediated rejection of CRISPR-modified tumor cells in vivo and enabled high-throughput genetic screens in previously intractable models. A pooled in vivo screen using SCAR in a CRISPR-antigen-sensitive renal cell carcinoma revealed resistance pathways associated with autophagy and major histocompatibility complex class I (MHC class I) expression. Thus, SCAR presents a resource that enables CRISPR-based studies of tumor-immune interactions and prevents unwanted immune recognition of genetically engineered cells, with implications for clinical applications.


Subject(s)
Carcinoma, Renal Cell/immunology , Genetic Testing/methods , Genetic Vectors/genetics , Immunotherapy/methods , Kidney Neoplasms/immunology , Killer Cells, Natural/immunology , Lentivirus/genetics , Animals , Antigen Presentation , Autophagy , Carcinoma, Renal Cell/therapy , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering , Histocompatibility Antigens Class I/metabolism , Kidney Neoplasms/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Targeted Therapy
SELECTION OF CITATIONS
SEARCH DETAIL