Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5069, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871730

ABSTRACT

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms , Proteome , Humans , Prostatic Neoplasms/urine , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Male , Extracellular Vesicles/metabolism , Proteome/metabolism , Aged , Biomarkers, Tumor/urine , Biomarkers, Tumor/metabolism , Proteomics/methods , Middle Aged , Prostate/metabolism , Prostate/pathology , Cell Line, Tumor
2.
Prostate ; 84(11): 1067-1075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734979

ABSTRACT

INTRODUCTION: Aberrant glycosylation of proteins is an important hallmark in multiple cancers. Prostate-specific membrane antigen (PSMA), a highly glycosylated protein with 10 N-linked glycosylation sites, is an Food and Drug Administration approved theranostic for prostate cancer. However, glycosylation changes in PSMA that are associated with prostate cancer disease progression have not been fully characterized. METHODS: We investigated whether urinary PSMA sialylation correlate with high-grade prostate cancer. Urine samples were collected from men after digital rectal examination (DRE) before prostate biopsy. Lectin-antibody enzyme-linked immunoassay was used to quantify α2,3-sialyl PSMA in post-DRE urine samples from subjects with benign prostate tumors, Grade Group 1 prostate cancer and those with Grade Group ≥2 disease. RESULTS: There are significant increases in α2,3-sialylated PSMA in patients with Grade Group ≥2 disease compared to benign (p = 0.0009) and those with Grade Group 1 disease (p = 0.0063). There were no significant differences in α2,3-sialyl PSMA levels between Grade Group 1 and benign prostate tumors (p = 0.7947). CONCLUSIONS: Our study shows that there are significant differences in the abundance of α2,3-sialylated PSMA in post-DRE urines from disease stratified prostate cancer patients, and the increase is correlated with progression and disease severity. The detection of increased PSMA sialyation in post-DRE urines from patients with higher Grade Group ≥2 disease states provides novel untapped potential for the development of prognostic biomarkers for prostate cancer. Specifically, quantitation of α2,3-sialylated PSMA shows potential for discriminating between benign to intermediate grade disease, which is a significant clinical challenge in staging and risk stratification of prostate cancer.


Subject(s)
Antigens, Surface , Biomarkers, Tumor , Glutamate Carboxypeptidase II , Neoplasm Grading , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/urine , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Aged , Glutamate Carboxypeptidase II/urine , Antigens, Surface/urine , Middle Aged , Glycosylation , Biomarkers, Tumor/urine
3.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546794

ABSTRACT

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions, and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome, and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.

4.
J Extracell Vesicles ; 11(2): e12184, 2022 02.
Article in English | MEDLINE | ID: mdl-35119778

ABSTRACT

The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.


Subject(s)
Extracellular Vesicles , Proteomics , Extracellular Vesicles/chemistry , Humans , Male , Mass Spectrometry , Prostate , Proteomics/methods , Ultracentrifugation
5.
Proteomics Clin Appl ; 14(6): e2000012, 2020 11.
Article in English | MEDLINE | ID: mdl-32614141

ABSTRACT

PURPOSE: The rs17632542 single nucleotide polymorphism (SNP) results in lower serum prostate specific antigen (PSA) levels which may further mitigate against its clinical utility as a prostate cancer biomarker. Post-digital rectal exam (post-DRE) urine is a minimally invasive fluid that is currently utilized in prostate cancer diagnosis. To detect and quantitate the variant protein in urine. EXPERIMENTAL DESIGN: Fifty-three post-DRE urines from rs17632542 genotyped individuals processed and analyzed by liquid chromatography/mass spectrometry (LC-MS) in a double-blinded randomized study. The ability to distinguish between homozygous wild-type, heterozygous, or homozygous variant is examined before unblinding. RESULTS: Stable-isotope labeled peptides are used in the detection and quantitation of three peptides of interest in each sample using parallel reaction monitoring (PRM). Using these data, groupings are predicted using hierarchical clustering in R. Accuracy of the predictions show 100% concordance across the 53 samples, including individuals homozygous and heterozygous for the SNP. CONCLUSIONS AND CLINICAL RELEVANCE: The study demonstrates that MS based peptide variant quantitation in urine could be useful in determining patient genotype expression. This assay provides a tool to evaluate the utility of PSA variant (rs17632542) in parallel with current and forthcoming urine biomarker panels.


Subject(s)
Kallikreins/urine , Prostate-Specific Antigen/urine , Prostatic Neoplasms/urine , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , Chromatography, Liquid/methods , Digital Rectal Examination/methods , Genotype , Humans , Kallikreins/genetics , Male , Mass Spectrometry/methods , Polymorphism, Single Nucleotide , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...