Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Brain Behav Immun ; 119: 286-300, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608739

ABSTRACT

Alzheimer's disease is a progressive neurological disorder causing memory loss and cognitive decline. The underlying causes of cognitive deterioration and neurodegeneration remain unclear, leading to a lack of effective strategies to prevent dementia. Recent evidence highlights the role of neuroinflammation, particularly involving microglia, in Alzheimer's disease onset and progression. Characterizing the initial phase of Alzheimer's disease can lead to the discovery of new biomarkers and therapeutic targets, facilitating timely interventions for effective treatments. We used the AppNL-G-F knock-in mouse model, which resembles the amyloid pathology and neuroinflammatory characteristics of Alzheimer's disease, to investigate the transition from a pre-plaque to an early plaque stage with a combined functional and molecular approach. Our experiments show a progressive decrease in the power of cognition-relevant hippocampal gamma oscillations during the early stage of amyloid pathology, together with a modification of fast-spiking interneuron intrinsic properties and postsynaptic input. Consistently, transcriptomic analyses revealed that these effects are accompanied by changes in synaptic function-associated pathways. Concurrently, homeostasis- and inflammatory-related microglia signature genes were downregulated. Moreover, we found a decrease in Iba1-positive microglia in the hippocampus that correlates with plaque aggregation and neuronal dysfunction. Collectively, these findings support the hypothesis that microglia play a protective role during the early stages of amyloid pathology by preventing plaque aggregation, supporting neuronal homeostasis, and overall preserving the oscillatory network's functionality. These results suggest that the early alteration of microglia dynamics could be a pivotal event in the progression of Alzheimer's disease, potentially triggering plaque deposition, impairment of fast-spiking interneurons, and the breakdown of the oscillatory circuitry in the hippocampus.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Disease Progression , Hippocampus , Mice, Transgenic , Microglia , Plaque, Amyloid , Animals , Microglia/metabolism , Microglia/pathology , Hippocampus/metabolism , Hippocampus/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Interneurons/metabolism , Interneurons/pathology
2.
Front Cell Neurosci ; 18: 1347535, 2024.
Article in English | MEDLINE | ID: mdl-38650656

ABSTRACT

Astrocytes represent the most abundant cell type in the brain, where they play critical roles in synaptic transmission, cognition, and behavior. Recent discoveries show astrocytes are involved in synaptic dysfunction during Alzheimer's disease (AD). AD patients have imbalanced cholesterol metabolism, demonstrated by high levels of side-chain oxidized cholesterol known as 27-hydroxycholesterol (27-OH). Evidence from our laboratory has shown that elevated 27-OH can abolish synaptic connectivity during neuromaturation, but its effect on astrocyte function is currently unclear. Our results suggest that elevated 27-OH decreases the astrocyte function in vivo in Cyp27Tg, a mouse model of brain oxysterol imbalance. Here, we report a downregulation of glutamate transporters in the hippocampus of CYP27Tg mice together with increased GFAP. GLT-1 downregulation was also observed when WT mice were fed with high-cholesterol diets. To study the relationship between astrocytes and neurons, we have developed a 3D co-culture system that allows all the cell types from mice embryos to differentiate in vitro. We report that our 3D co-cultures reproduce the effects of 27-OH observed in 2D neurons and in vivo. Moreover, we found novel degenerative effects in astrocytes that do not appear in 2D cultures, together with the downregulation of glutamate transporters GLT-1 and GLAST. We propose that this transporter dysregulation leads to neuronal hyperexcitability and synaptic dysfunction based on the effects of 27-OH on astrocytes. Taken together, these results report a new mechanism linking oxysterol imbalance in the brain and synaptic dysfunction through effects on astrocyte function.

3.
Sci Adv ; 10(4): eadj1354, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38266095

ABSTRACT

The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Memory Disorders , Male , Female , Humans , Animals , Mice , Aged , Cholesterol 24-Hydroxylase , Memory Disorders/etiology , Cholesterol , Cognition , Alzheimer Disease/genetics , Estrogens
4.
Alzheimers Res Ther ; 15(1): 220, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38115091

ABSTRACT

BACKGROUND: Disturbances in brain cholesterol homeostasis may be involved in the pathogenesis of Alzheimer's disease (AD). Lipid-lowering medications could interfere with neurodegenerative processes in AD through cholesterol metabolism or other mechanisms. OBJECTIVE: To explore the association between the use of lipid-lowering medications and cognitive decline over time in a cohort of patients with AD or mixed dementia with indication for lipid-lowering treatment. METHODS: A longitudinal cohort study using the Swedish Registry for Cognitive/Dementia Disorders, linked with other Swedish national registries. Cognitive trajectories evaluated with mini-mental state examination (MMSE) were compared between statin users and non-users, individual statin users, groups of statins and non-statin lipid-lowering medications using mixed-effect regression models with inverse probability of drop out weighting. A dose-response analysis included statin users compared to non-users. RESULTS: Our cohort consisted of 15,586 patients with mean age of 79.5 years at diagnosis and a majority of women (59.2 %). A dose-response effect was demonstrated: taking one defined daily dose of statins on average was associated with 0.63 more MMSE points after 3 years compared to no use of statins (95% CI: 0.33;0.94). Simvastatin users showed 1.01 more MMSE points (95% CI: 0.06;1.97) after 3 years compared to atorvastatin users. Younger (< 79.5 years at index date) simvastatin users had 0.80 more MMSE points compared to younger atorvastatin users (95% CI: 0.05;1.55) after 3 years. Simvastatin users had 1.03 more MMSE points (95% CI: 0.26;1.80) compared to rosuvastatin users after 3 years. No differences regarding statin lipophilicity were observed. The results of sensitivity analysis restricted to incident users were not consistent. CONCLUSIONS: Some patients with AD or mixed dementia with indication for lipid-lowering medication may benefit cognitively from statin treatment; however, further research is needed to clarify the findings of sensitivity analyses.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mixed Dementias , Humans , Female , Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Atorvastatin/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/epidemiology , Cohort Studies , Longitudinal Studies , Simvastatin/therapeutic use , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/epidemiology , Cholesterol
5.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Article in English | MEDLINE | ID: mdl-37698780

ABSTRACT

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Sirtuin 2 , Animals , Humans , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Disease Models, Animal , Inflammation/chemically induced , Inflammation/pathology , Mice, Transgenic , Sirtuin 2/antagonists & inhibitors , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology
6.
Brain Commun ; 5(5): fcad228, 2023.
Article in English | MEDLINE | ID: mdl-37680670

ABSTRACT

Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25 kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.

7.
Alzheimers Res Ther ; 15(1): 141, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608325

ABSTRACT

BACKGROUND: Mounting evidence suggests the involvement of viruses in the development and treatment of Alzheimer's disease (AD). However, there remains a significant research gap in metagenomic studies investigating the gut virome of AD patients, leaving gut viral dysbiosis in AD unexplored. This study aimed to fill this gap by conducting a metagenomics analysis of the gut virome in both amyloid-positive AD patients (Aß + ADs) and healthy controls (HCs), with the objective of identifying viral signatures linked with AD. METHOD: Whole-genome sequence (WGS) data from 65 human participants, including 30 Aß + ADs and 35 HCs, was obtained from the database NCBI SRA (Bio Project: PRJEB47976). The Metaphlan3 pipeline and linear discriminant analysis effect size (LEfSe) analysis were utilized for the bioinformatics process and the detection of viral signatures, respectively. In addition, the Benjamini-Hochberg method was applied with a significance cutoff of 0.05 to evaluate the false discovery rate for all biomarkers identified by LEfSe. The CombiROC model was employed to determine the discriminatory power of the viral signatures identified by LEfSe. RESULTS: Compared to HCs, the gut virome profiles of Aß + ADs showed lower alpha diversity, indicating a lower bacteriophage richness. The Siphoviridae family was decreased in Aß + ADs. Significant decreases of Lactococcus phages were found in Aß + ADs, including bIL285, Lactococcus phage bIL286, Lactococcus phage bIL309, and Lactococcus phage BK5 T, Lactococcus phage BM13, Lactococcus phage P335 sensu lato, Lactococcus phage phiLC3, Lactococcus phage r1t, Lactococcus phage Tuc2009, Lactococcus phage ul36, and Lactococcus virus bIL67. The predictive combined model of these viral signatures obtained an area under the curve of 0.958 when discriminating Aß + ADs from HCs. CONCLUSION: This is the first study to identify distinct viral signatures in the intestine that can be used to effectively distinguish individuals with AD from HCs.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Metagenomics , Amyloidogenic Proteins , Biomarkers , Computational Biology
8.
J Steroid Biochem Mol Biol ; 234: 106387, 2023 11.
Article in English | MEDLINE | ID: mdl-37648096

ABSTRACT

The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3ß-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.


Subject(s)
Oxysterols , Steroid Hydroxylases , Animals , Mice , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Cytochrome P-450 Enzyme System/genetics , Hydroxycholesterols/metabolism , Oxysterols/metabolism , Cognition , Disease Models, Animal , Mice, Knockout , Glucose
9.
Glia ; 71(6): 1414-1428, 2023 06.
Article in English | MEDLINE | ID: mdl-36779429

ABSTRACT

Oxidized cholesterol metabolite 27-hydroxycholesterol (27-OH) is a potential link between hypercholesterolemia and neurodegenerative diseases since unlike peripheral cholesterol, 27-OH is transported across the blood-brain barrier. However, the effects of high 27-OH levels on oligodendrocyte function remain unexplored. We hypothesize that during hypercholesterolemia 27-OH may impact oligodendrocytes and myelin and thus contribute to the disconnection of neural networks in neurodegenerative diseases. To test this idea, we first investigated the effects of 27-OH in cultured oligodendrocytes and found that it induces cell death of immature O4+ /GalC+ oligodendrocytes along with stimulating differentiation of PDGFR+ oligodendrocyte progenitors (OPCs). Next, transgenic mice with increased systemic 27-OH levels (Cyp27Tg) underwent behavioral testing and their brains were immunohistochemically stained and lysed for immunoblotting. Chronic exposure to 27-OH in mice resulted in increased myelin basic protein (MBP) but not 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) or myelin oligodendrocyte glycoprotein (MOG) levels in the corpus callosum and cerebral cortex. Intriguingly, we also found impairment of spatial learning suggesting that subtle changes in myelinated axons of vulnerable areas like the hippocampus caused by 27-OH may contribute to impaired cognition. Finally, we found that 27-OH levels in cerebrospinal fluid from memory clinic patients were associated with levels of the myelination regulating CNPase, independently of Alzheimer's disease markers. Thus, 27-OH promotes OPC differentiation and is toxic to immature oligodendrocytes as well as it subtly alters myelin by targeting oligodendroglia. Taken together, these data indicate that hypercholesterolemia-derived higher 27-OH levels change the oligodendrocytic capacity for appropriate myelin remodeling which is a crucial factor in neurodegeneration and aging.


Subject(s)
Hypercholesterolemia , White Matter , Mice , Animals , White Matter/metabolism , Hypercholesterolemia/metabolism , Brain/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Cell Differentiation , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Mice, Transgenic
10.
Commun Biol ; 5(1): 245, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314851

ABSTRACT

Sustained microglial activation and increased pro-inflammatory signalling cause chronic inflammation and neuronal damage in Alzheimer's disease (AD). Resolution of inflammation follows neutralization of pathogens and is a response to limit damage and promote healing, mediated by pro-resolving lipid mediators (LMs). Since resolution is impaired in AD brains, we decided to test if intranasal administration of pro-resolving LMs in the AppNL-G-F/NL-G-F mouse model for AD could resolve inflammation and ameliorate pathology in the brain. A mixture of the pro-resolving LMs resolvin (Rv) E1, RvD1, RvD2, maresin 1 (MaR1) and neuroprotectin D1 (NPD1) was administered to stimulate their respective receptors. We examined amyloid load, cognition, neuronal network oscillations, glial activation and inflammatory factors. The treatment ameliorated memory deficits accompanied by a restoration of gamma oscillation deficits, together with a dramatic decrease in microglial activation. These findings open potential avenues for therapeutic exploration of pro-resolving LMs in AD, using a non-invasive route.


Subject(s)
Alzheimer Disease , Administration, Intranasal , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides , Animals , Inflammation , Mice
11.
Alzheimers Res Ther ; 14(1): 37, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35209952

ABSTRACT

BACKGROUND: Thioredoxin-80 (Trx80) is a cleavage product from the redox-active protein Thioredoxin-1 and has been previously described as a pro-inflammatory cytokine secreted by immune cells. Previous studies in our group reported that Trx80 levels are depleted in Alzheimer's disease (AD) brains. However, no studies so far have investigated peripheral Trx80 levels in the context of AD pathology and whether could be associated with the main known AD risk factors and biomarkers. METHODS: Trx80 was measured in serum samples from participants from two different cohorts: the observational memory clinic biobank (GEDOC) (N = 99) with AD CSF biomarker data was available and the population-based lifestyle multidomain intervention trial Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) (N = 47), with neuroimaging data and blood markers of inflammation available. The GEDOC cohort consists of participants diagnosed with subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and AD, whereas the FINGER participants are older adults at-risk of dementia, but without substantial cognitive impairment. One-way ANOVA and multiple comparison tests were used to assess the levels of Trx80 between groups. Linear regression models were used to explore associations of Trx80 with cognition, AD CSF biomarkers (Aß42, t-tau, p-tau and p-tau/t-tau ratio), inflammatory cytokines, and neuroimaging markers. RESULTS: In the GEDOC cohort, Trx80 was associated to p-tau/t-tau ratio in the MCI group. In the FINGER cohort, serum Trx80 levels correlated with lower hippocampal volume and higher pro-inflammatory cytokine levels. In both GEDOC and FINGER cohorts, ApoE4 carriers had significantly higher serum Trx80 levels compared to non-ApoE4 carriers. However, Trx80 levels in the brain were further decreased in AD patients with ApoE4 genotype. CONCLUSION: We report that serum Trx80 levels are associated to AD disease stage as well as to several risk factors for AD such as age and ApoE4 genotype, which suggests that Trx80 could have potential as serum AD biomarker. Increased serum Trx80 and decreased brain Trx80 levels was particularly seen in ApoE4 carriers. Whether this could contribute to the mechanism by which ApoE4 show increased vulnerability to develop AD would need to be further investigated. TRIAL REGISTRATION: ClinicalTrials.gov NCT01041989 . Registered on 4 January 2010-retrospectively registered.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Apolipoprotein E4/genetics , Biomarkers , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Humans , Thioredoxins , tau Proteins
12.
Essays Biochem ; 65(6): 913-925, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34623401

ABSTRACT

The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERß) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Receptors, Estrogen , Aging , Alzheimer Disease/metabolism , Brain/metabolism , Female , Humans , Male , Receptors, Estrogen/metabolism
13.
Int J Mol Sci ; 22(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34576302

ABSTRACT

The activation of the brain renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cognition. While the brain RAS has been studied before in the context of hypertension, little is known about its role and regulation in relation to neuronal function and its modulation. Adequate blood flow to the brain as well as proper clearing of metabolic byproducts become crucial in the presence of neurodegenerative disorders such as Alzheimer's disease (AD). RAS inhibition (RASi) drugs that can cross into the central nervous system have yielded unclear results in improving cognition in AD patients. Consequently, only one RASi therapy is under consideration in clinical trials to modify AD. Moreover, the role of non-genetic factors such as hypercholesterolemia in the pathophysiology of AD remains largely uncharacterized, even when evidence exists that it can lead to alteration of the RAS and cognition in animal models. Here we revise the evidence for the function of the brain RAS in cognition and AD pathogenesis and summarize the evidence that links it to hypercholesterolemia and other risk factors. We review existent medications for RASi therapy and show research on novel drugs, including small molecules and nanodelivery strategies that can target the brain RAS with potential high specificity. We hope that further research into the brain RAS function and modulation will lead to innovative therapies that can finally improve AD neurodegeneration.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Renin-Angiotensin System , Alzheimer Disease/drug therapy , Animals , Brain/drug effects , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
14.
Mol Neurobiol ; 58(12): 6063-6076, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34449045

ABSTRACT

Alterations in cholesterol metabolism in the brain have a major role in the physiology of Alzheimer's disease (AD). Oxysterols are cholesterol metabolites with multiple implications in memory functions and in neurodegeneration. Previous studies have shown detrimental effects of cholesterol metabolites in neurons, but its effect in glial cells is unknown. We used a high-fat/high-cholesterol diet in mice to study the effects of hypercholesterolemia over the alarmin S100A8 cascade in the hippocampus. Using CYP27Tg, a transgenic mouse model, we show that the hypercholesterolemia influence on the brain is mediated by the excess of 27-hydroxycholesterol (27-OH), a cholesterol metabolite. We also employed an acute model of 27-OH intraventricular injection in the brain to study RAGE and S100A8 response. We used primary cultures of neurons and astrocytes to study the effect of high levels of 27-OH over the S100A8 alarmin cascade. We report that a high-fat/high-cholesterol diet leads to an increase in S100A8 production in the brain. In CYP27Tg, we report an increase of S100A8 and its receptor RAGE in the hippocampus under elevated 27-OH in the brain. Using siRNA, we found that 27-OH upregulation of RAGE in astrocytes and neurons is mediated by the nuclear receptor RXRγ. Silencing RXRγ in neurons prevented 27-OH-mediated upregulation of RAGE. These results show that S100A8 alarmin and RAGE respond to high levels of 27-OH in the brain in both neurons and astrocytes through RXRγ. Our study supports the notion that 27-OH mediates detrimental effects of hypercholesterolemia to the brain via alarmin signaling.


Subject(s)
Alarmins/metabolism , Brain/metabolism , Calgranulin A/metabolism , Hydroxycholesterols/metabolism , Hypercholesterolemia/metabolism , Neurodegenerative Diseases/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Astrocytes/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neurons/metabolism
15.
Aging (Albany NY) ; 13(11): 14729-14744, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078751

ABSTRACT

The potential harmful effects of polypharmacy (concurrent use of 5 or more drugs) are difficult to investigate in an experimental design in humans. Moreover, there is a lack of knowledge on sex-specific differences on the outcomes of multiple-drug use. The present study aims to investigate the effects of an eight-week exposure to a regimen of five different medications (metoprolol, paracetamol, aspirin, simvastatin and citalopram) in young adult female mice. Polypharmacy-treated animals showed significant impairment in object recognition and fear associated contextual memory, together with a significant reduction of certain hippocampal proteins involved in pathways necessary for the consolidation of these types of memories, compared to animals with standard diet. The impairments in explorative behavior and spatial memory that we reported previously in young adult male mice administered the same polypharmacy regimen were not observed in females in the current study. Therefore, the same combination of medications induced different negative outcomes in young adult male and female mice, causing a significant deficit in non-spatial memory in female animals. Overall, this study strongly supports the importance of considering sex-specific differences in designing safer and targeted multiple-drug therapies.


Subject(s)
Aging/physiology , Cognition/physiology , Polypharmacy , Animals , Anxiety/pathology , Behavior, Animal , Blood Proteins/metabolism , Body Weight , Diet , Drinking Behavior , Feeding Behavior , Female , Hippocampus/metabolism , Mice, Inbred C57BL , Motor Activity , Spatial Memory , Time Factors
16.
Aging (Albany NY) ; 12(11): 10147-10161, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32445552

ABSTRACT

A major challenge in the health care system is the lack of knowledge about the possible harmful effects of multiple drug treatments in old age. The present study aims to characterize a mouse model of polypharmacy, in order to investigate whether long-term exposure to multiple drugs could lead to adverse outcomes. To this purpose we selected five drugs from the ten most commonly used by older adults in Sweden (metoprolol, paracetamol, aspirin, simvastatin and citalopram). Five-month-old wild type male mice were fed for eight weeks with control or polypharmacy diet. We report for the first time that young adult polypharmacy-treated mice showed a significant decrease in exploration and spatial working memory compared to the control group. This memory impairment was further supported by a significant reduction of synaptic proteins in the hippocampus of treated mice. These novel results suggest that already at young adult age, use of polypharmacy affects explorative behavior and synaptic functions. This study underlines the importance of investigating the potentially negative outcomes from concomitant administration of different drugs, which have been poorly explored until now. The mouse model proposed here has translatable findings and can be applied as a useful tool for future studies on polypharmacy.


Subject(s)
Exploratory Behavior/drug effects , Memory Disorders/chemically induced , Polypharmacy , Synapses/drug effects , Adult , Animals , Disease Models, Animal , Exploratory Behavior/physiology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Memory Disorders/diagnosis , Memory Disorders/pathology , Memory Disorders/physiopathology , Mice , Risk Factors , Spatial Memory/drug effects , Spatial Memory/physiology , Synapses/physiology
17.
Sci Rep ; 9(1): 3965, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850634

ABSTRACT

Evidence is accumulating that the main chronic diseases of aging Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM) share common pathophysiological mechanisms. This study aimed at applying systems biology approaches to increase the knowledge of the shared molecular pathways underpinnings of AD and T2DM. We analysed transcriptomic data of post-mortem AD and T2DM human brains to obtain disease signatures of AD and T2DM and combined them with protein-protein interaction information to construct two disease-specific networks. The overlapping AD/T2DM network proteins were then used to extract the most representative Gene Ontology biological process terms. The expression of genes identified as relevant was studied in two AD models, 3xTg-AD and ApoE3/ApoE4 targeted replacement mice. The present transcriptomic data analysis revealed a principal role for autophagy in the molecular basis of both AD and T2DM. Our experimental validation in mouse AD models confirmed the role of autophagy-related genes. Among modulated genes, Cyclin-Dependent Kinase Inhibitor 1B, Autophagy Related 16-Like 2, and insulin were highlighted. In conclusion, the present investigation revealed autophagy as the central dys-regulated pathway in highly co-morbid diseases such as AD and T2DM allowing the identification of specific genes potentially involved in disease pathophysiology which could become novel targets for therapeutic intervention.


Subject(s)
Alzheimer Disease/pathology , Autophagy/physiology , Diabetes Mellitus, Type 2/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Comorbidity , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Transcriptome/physiology
18.
J Steroid Biochem Mol Biol ; 190: 104-114, 2019 06.
Article in English | MEDLINE | ID: mdl-30878503

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs. Years of research have shown a strong correlation between blood hypercholesterolemia and AD, however cholesterol is not able to cross the Blood Brain Barrier (BBB) into the brain. Cholesterol lowering therapies have shown mixed results in cognitive performance in AD patients, raising questions of whether brain cholesterol metabolism in the brain should be studied separately from peripheral cholesterol metabolism and what their relationship is. Unlike cholesterol, oxidized cholesterol metabolites known as oxysterols are able to cross the BBB from the circulation into the brain and vice-versa. The main oxysterols present in the circulation are 24S-hydroxycholesterol and 27-hydroxycholesterol. These oxysterols and their catalysing enzymes have been found to be altered in AD brains and there is evidence indicating their influence in the progression of the disease. This review gives a broad perspective on the relationship between hypercholesterolemia and AD, cholesterol lowering therapies for AD patients and the role of oxysterols in pathological and non-pathological conditions. Also, we propose cholesterol metabolites as valuable targets for prevention and alternative AD treatments.


Subject(s)
Alzheimer Disease/metabolism , Cholesterol/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Animals , Anticholesteremic Agents/therapeutic use , Brain/drug effects , Brain/metabolism , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol 24-Hydroxylase/metabolism , Humans , Hydroxycholesterols/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Risk Factors
19.
Cereb Cortex ; 29(1): 429-446, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30395175

ABSTRACT

Hypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition. Furthermore, PSD95 has an essential function for synaptic maintenance and plasticity. PSD95 synthesis is controlled by the REST-miR124a-PTBP1 axis. Here, we report that high levels of 27-OH induce REST-miR124a-PTBP1 axis dysregulation in a possible RxRγ-dependent manner, suggesting that 27-OH reduces PSD95 levels through this mechanism. Our results reveal a possible molecular link between hypercholesterolemia and neurodegeneration. We discuss the possibility that reduction of 27-OH levels could be a useful strategy for preventing memory and cognitive decline in neurodegenerative disorders.


Subject(s)
Hippocampus/metabolism , Hydroxycholesterols/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Cells, Cultured , Disks Large Homolog 4 Protein/antagonists & inhibitors , Disks Large Homolog 4 Protein/biosynthesis , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Rats , Rats, Sprague-Dawley , Synapses/pathology
20.
PLoS One ; 13(3): e0194892, 2018.
Article in English | MEDLINE | ID: mdl-29596512

ABSTRACT

BACKGROUND: Polypharmacy is common among older adults. However, little is known about the composition of polypharmacy: which are the most frequently used drugs, and how much do these drugs contribute to the overall prevalence of polypharmacy. METHODS: A total of 822,619 Swedes aged ≥75 years was identified from the Total Population Register. Through record-linkage with the Swedish Prescribed Drug Register and the Social Services Register we could analyze concurrent drug use in the entire population (both individuals living in the community and institution) on the 31 December 2013. RESULTS: The prevalence of polypharmacy (≥5 drugs) was 45%. The most frequently used drugs were cardiovascular drugs, analgesics, and psychotropics. By excluding the ten most frequently used drug classes or compounds, the prevalence of polypharmacy was reduced by 69% and 51% respectively. The majority of the users of either one of the 10 most frequently used drugs concurrently used at least 4 other drug classes (66%-85%). CONCLUSION: Almost half of the individuals aged ≥75 years are exposed to polypharmacy in Sweden. A handful of drugs make a large contribution to the overall prevalence of polypharmacy and the majority of drugs prescribed to persons aged ≥75 years are used in combination with other drugs. This highlights the high use of drugs, and the need to consider other concurrent drug treatments when prescribing for older adults.


Subject(s)
Polypharmacy , Registries , Aged , Aged, 80 and over , Drug Prescriptions/statistics & numerical data , Female , Humans , Male , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...