Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 9(14): 3570-3579, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29780489

ABSTRACT

A stable and cost effective oxygen evolution reaction (OER) catalyst is crucial for the large-scale market penetration of proton exchange membrane (PEM) water electrolyzers. We show that the synthesis of iridium nanoparticles in either low purity ethanol or water, or in the absence of a surfactant, is detrimental to the electrocatalytic properties of the materials. Adding NaBH4 in excess improves the purity of the catalyst enhancing the OER activity up to 100 A gIr-1 at 1.51 V vs. RHE, the highest value reported so far for high purity Ir nanoparticles. The measured OER activity correlates with the capacitive current rather than with the charge corresponding to the IrIII/IrIV oxidation peak. Operando near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) on membrane electrode assemblies (MEAs) with the synthesized catalysts reveals a metallic core surrounded by a thin layer of IrIII/IV oxides/hydroxides. Oxidation of IrIII leaves behind a porous ultrathin layer of IrIV oxides/hydroxides, which dominate the surface during the OER, while IrV was not detected.

SELECTION OF CITATIONS
SEARCH DETAIL