Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Invest ; 128(7): 2763-2773, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29781814

ABSTRACT

Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.


Subject(s)
Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Vaccination , Adaptive Immunity , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Clonal Anergy/immunology , Collagen/metabolism , Cytokines/blood , Female , Fibrosis , HIV Infections/immunology , HIV Infections/pathology , HIV Seronegativity/immunology , Humans , Immune Tolerance , Lymphocyte Activation , Lymphoid Tissue/metabolism , Male , Middle Aged , Uganda , Yellow Fever Vaccine/immunology , Young Adult
2.
Nat Med ; 23(11): 1271-1276, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967921

ABSTRACT

In the quest for a functional cure or the eradication of HIV infection, it is necessary to know the sizes of the reservoirs from which infection rebounds after treatment interruption. Thus, we quantified SIV and HIV tissue burdens in tissues of infected nonhuman primates and lymphoid tissue (LT) biopsies from infected humans. Before antiretroviral therapy (ART), LTs contained >98% of the SIV RNA+ and DNA+ cells. With ART, the numbers of virus (v) RNA+ cells substantially decreased but remained detectable, and their persistence was associated with relatively lower drug concentrations in LT than in peripheral blood. Prolonged ART also decreased the levels of SIV- and HIV-DNA+ cells, but the estimated size of the residual tissue burden of 108 vDNA+ cells potentially containing replication-competent proviruses, along with evidence of continuing virus production in LT despite ART, indicated two important sources for rebound following treatment interruption. The large sizes of these tissue reservoirs underscore challenges in developing 'HIV cure' strategies targeting multiple sources of virus production.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/virology , HIV/isolation & purification , Viral Load , DNA, Viral/analysis , HIV/genetics , HIV Infections/blood , Humans , Lymphoid Tissue/virology , RNA, Viral/analysis
3.
Nature ; 511(7511): 601-5, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25043006

ABSTRACT

Inflammation in HIV infection is predictive of non-AIDS morbidity and death, higher set point plasma virus load and virus acquisition; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution.


Subject(s)
Disease Progression , Interferon-alpha/therapeutic use , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus/immunology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Interferon-alpha/pharmacology , Kaplan-Meier Estimate , Signal Transduction/drug effects , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control
4.
Lancet ; 377(9779): 1770-6, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21514658

ABSTRACT

BACKGROUND: We have shown that immunity to infection with Plasmodium falciparum can be induced experimentally in malaria-naive volunteers through immunisation by bites of infected mosquitoes while simultaneously preventing disease with chloroquine prophylaxis. This immunity was associated with parasite-specific production of interferon γ and interleukin 2 by pluripotent effector memory cells in vitro. We aim to explore the persistence of protection and immune responses in the same volunteers. METHODS: In an open-label study at the Radboud University Nijmegen Medical Centre (Nijmegen, Netherlands), from November to December, 2009, we rechallenged previously immune volunteers (28 months after immunisation) with the bites of five mosquitoes infected with P falciparum. Newly recruited malaria-naive volunteers served as infection controls. Our primary outcome was the detection of blood-stage parasitaemia by microscopy. We assessed the kinetics of parasitaemia with real-time quantitative PCR (rtPCR) and recorded clinical signs and symptoms. In-vitro production of interferon γ and interleukin 2 by effector memory T cells was studied after stimulation with sporozoites and red blood cells infected with P falciparum. Differences in cellular immune responses between the study groups were assessed with the Mann-Whitney test. This study is registered with ClinicalTrials.gov, number NCT00757887. FINDINGS: Four of six immune volunteers were microscopically negative after rechallenge. rtPCR-based detection of blood-stage parasites in these individuals was negative throughout follow-up. Patent parasitaemia was delayed in the remaining two immunised volunteers. In-vitro assays showed the long-term persistence of parasite-specific pluripotent effector memory T-cell responses in protected volunteers. The four protected volunteers reported several mild to moderate adverse events, of which the most commonly reported symptom was headache (one to three episodes per volunteer). The two patients with delayed patency had adverse events similar to those in the control group. INTERPRETATION: Artificially induced immunity lasts longer than generally recorded after natural exposure; providing a new avenue of research into the mechanisms of malaria immunity. FUNDING: Dioraphte Foundation.


Subject(s)
Adaptive Immunity/immunology , Antimalarials/administration & dosage , Chloroquine/administration & dosage , Immunization/methods , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Sporozoites/immunology , Adult , Antibody Specificity/immunology , Antimalarials/adverse effects , Female , Humans , Immunization/adverse effects , Immunologic Memory/immunology , Interferon-gamma/blood , Interleukin-2/blood , Male , Netherlands , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL