Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Neurosci ; 18: 1449063, 2024.
Article in English | MEDLINE | ID: mdl-39165834

ABSTRACT

Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases.

2.
PLoS One ; 15(6): e0233767, 2020.
Article in English | MEDLINE | ID: mdl-32531779

ABSTRACT

Functional and anatomical connection between the liver and the spleen is most clearly manifested in various pathological conditions of the liver (cirrhosis, hepatitis). The mechanisms of the interaction between the two organs are still poorly understood, as there have been practically no studies on the influence exerted by the spleen on the normal liver. Mature male Sprague-Dawley rats of 250-260 g body weight, 3 months old, were splenectomized. The highest numbers of Ki67+ hepatocytes in the liver of splenectomized rats were observed at 24 h after the surgery, simultaneously with the highest index of Ki67-positive hepatocytes. After surgical removal of the spleen, expression of certain genes in the liver tissues increased. A number of genes were upregulated in the liver at a single time point of 24 h, including Ccne1, Egf, Tnfa, Il6, Hgf, Met, Tgfb1r2 and Nos2. The expression of Ccnd1, Tgfb1, Tgfb1r1 and Il10 in the liver was upregulated over the course of 3 days after splenectomy. Monitoring of the liver macrophage populations in splenectomized animals revealed a statistically significant increase in the proportion of CD68-positive cells in the liver (as compared with sham-operated controls) detectable at 24 h and 48 h after the surgery. The difference in the liver content of CD68-positive cells between splenectomized and sham-operated animals evened out by day 3 after the surgery. No alterations in the liver content of CD163-positive cells were observed in the experiments. A decrease in the proportion of CD206-positive liver macrophages was observed at 48 h after splenectomy. The splenectomy-induced hepatocyte proliferation is described by us for the first time. Mechanistically, the effect is apparently induced by the removal of spleen as a major source of Tgfb1 (hepatocyte growth inhibitor) and subsequently supported by activation of proliferation factor-encoding genes in the liver.


Subject(s)
Cell Proliferation , Hepatocytes/metabolism , Splenectomy/adverse effects , Animals , Hepatocytes/physiology , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Macrophages/physiology , Male , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Sprague-Dawley , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
World J Gastroenterol ; 26(22): 2948-2966, 2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32587441

ABSTRACT

The pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting ß-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration via ß-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to ß- or δ- to ß-cell conversion (trans-differentiation). The existing preclinical models of ß-cell dysfunction or ablation (induced surgically, chemically or genetically) have significantly expanded our understanding of reparative regeneration of the islets and possible ways of its stimulation. The ultimate goal, sufficient level of functional activity of ß-cells or their substitutes can be achieved by two prospective broad strategies: ß-cell replacement and ß-cell regeneration. The "regeneration" strategy aims to maintain a preserved population of ß-cells through in situ exposure to biologically active substances that improve ß-cell survival, replication and insulin secretion, or to evoke the intrinsic adaptive mechanisms triggering the spontaneous non-ß- to ß-cell conversion. The "replacement" strategy implies transplantation of ß-cells (as non-disintegrated pancreatic material or isolated donor islets) or ß-like cells obtained ex vivo from progenitors or mature somatic cells (for example, hepatocytes or α-cells) under the action of small-molecule inducers or by genetic modification. We believe that the huge volume of experimental and clinical studies will finally allow a safe and effective solution to a seemingly simple goal-restoration of the functionally active ß-cells, the innermost hope of millions of people globally.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Prospective Studies , Regeneration , Regenerative Medicine
4.
BMC Immunol ; 19(1): 23, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29986661

ABSTRACT

BACKGROUND: In many clinical cases of extensive liver resection (e.g. due to malignancy), the residual portion is too small to maintain the body homeostasis. The resulting acute liver failure is associated with the compensatory growth inhibition, which is a typical manifestation of the 'small for size' liver syndrome. The study investigates possible causes of the delayed onset of hepatocyte proliferation after subtotal hepatectomy (80% liver resection) in rats. RESULTS: The data indicate that the growth inhibition correlates with delayed upregulation of the Tnf gene expression and low content of the corresponding Tnfα protein within the residual hepatic tissue. Considering the involvement of Tnf/Tnfα, the observed growth inhibition may be related to particular properties of liver macrophages - the resident Kupffer cells with CD68+CX1CR3-CD11b- phenotype. CONCLUSIONS: The delayed onset of hepatocyte proliferation correlates with low levels of Tnfα in the residual hepatic tissue. The observed growth inhibition possibly reflects specific composition of macrophage population of the liver. It is entirely composed of embryonically-derived Kupffer cells, which express the 'proregeneratory' M2 macrophage-specific marker CD206 in the course of regeneration.


Subject(s)
Liver Regeneration , Liver/growth & development , Liver/surgery , Macrophages/immunology , Animals , Hepatectomy/adverse effects , Hepatocytes/cytology , Hepatocytes/immunology , Kupffer Cells/cytology , Kupffer Cells/immunology , Lectins, C-Type/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Int J Biomed Sci ; 6(1): 71-6, 2010 Mar.
Article in English | MEDLINE | ID: mdl-23675179

ABSTRACT

A non-Markovian theory of population dynamics is to simulate the anti-cancer drug distribution between malignant and the hosting normal cell pools. The model takes into account both the cell life span and the proliferation rate differences. This new simulation approach looks promising for its potential to optimize a chemotherapeutic strategy by choosing the scheme with a higher degree of the drug-tumor selectivity. The pre-test designed simulation mode fits nicely the experimental data on Porphylleren-MC16 (PMC16) pharmacokinetics patterns including the allometric plots revealed for this novel medicinal nanoparticle possessing some anti-cancer potential and intervening into the oxygen-independent ATP production mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL