Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(31): 22642-22655, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39027040

ABSTRACT

Complexes of dysprosium(iii) ions with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione featuring various mono and bi-dentate neutral ligands have been prepared and thoroughly investigated. The synthesized complexes exhibit an octa-coordinated environment, achieved by stoichiometrically combining organic ligands and Dy(iii) ions. This octa-coordination environment of Dy(iii) ion was confirmed by FT-IR spectroscopy, thermogravimetry and elemental analysis. Near-white light (NWL) is emitted when complexes were exposed to UV radiation, indicating a significant flow of energy from the sensitizing moieties towards the Dy(iii) ion. This NWL emission might have resulted due to a balance between the intensities corresponding to emission peaks at 480 nm (blue) and 575 nm (yellow) in Dy1-Dy3. Emission spectra recorded at different excitation wavelength were utilized to study the tunability of CIE color coordinates. In addition to their high thermal stability, the complexes display bipolar paramagnetic shifts in their NMR spectra. The 4F9/2 → 6H13/2 transition, contributing ∼62% of the total emission, stands out as a promising candidate for laser amplification due to its dominance in the emission spectra. Additionally, NWL emission observed in a solid Dy(iii) complex opens intriguing possibilities for its application in next-generation white-light emitting devices.

2.
Luminescence ; 39(7): e4810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965929

ABSTRACT

Four eight-coordinated luminescent samarium complexes of type [Sm(hfpd)3L2] and [Sm(hfpd)3L'] [where hfpd = 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione L = tri-octyl-phosphine oxide (TOPO) and L' = 1,10-phenanthroline (phen), neocuproine (neoc) and bathocuproine (bathoc) were synthesized via a stoichiometrically controlled approach. This allows for precise control over the stoichiometry of the complexes, leading to reproducible properties. This investigation focuses on understanding the impact of secondary ligands on the luminescent properties of these complexes. Infrared (IR) spectra provided information about the molecular structures, whereas 1H and 13C nuclear magnetic resonance (NMR) spectra confirmed these structural details along with the coordination of ligands to trivalent Sm ion. The UV-vis spectra revealed the molar absorption coefficient and absorption bands associated with the hfpd ligand and photoluminescence (PL) spectroscopy demonstrated intense orange-red emission (648 nm relative to 4G5/2 → 6H9/2) from the complexes. The Commission Internationale de l'Éclairage (CIE) triangles indicated that the complexes emitted warm orange red light with color coordinates (x, y) ranging from (0.62, 0.36) to (0.40, 0.27). The investigation of the band gap as well as color parameters confirms the utility of these complexes in displays and LEDs.


Subject(s)
Luminescence , Samarium , Ligands , Samarium/chemistry , Molecular Structure , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pentanones/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Luminescent Measurements
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124307, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38653075

ABSTRACT

Europium complexes exhibiting red luminescence were prepared by employing ß-diketone as main ligand and 1,10-phenanthroline as an additional ligand. Various methods, including 1H NMR, IR spectroscopy and analysis of optical band gap were employed to examine these complexes. The luminescent photophysical properties were investigated using PL spectroscopy and theoretical calculations were conducted to explore radiative transitions probabilities and Judd-Ofelt (J-O) parameters for transitions of type 5D0 → 7F2, 4. J-O parameters were determined using the JOES computer program and results were in good agreement with the outcomes obtained experimentally. The luminescence analysis results have verified the vibrant, single-color red emission of the prepared complexes. The band gap of ternary europium complexes, determined optically, electronically, and theoretically, falls within the range of 3-4 eV. This similarity indicates that these complexes are potentially suitable as semiconductor materials. The results from absorption, electrochemical and photophysical analyses indicate the potential use of synthesized complexes in lighting and display applications.

4.
RSC Adv ; 13(13): 9033-9045, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36950083

ABSTRACT

A series of lanthanide complexes have been synthesized with fluorinated 1,3-diketones and heteroaromatic ancillary moieties. Spectroscopic studies reveal the attachment of the respective lanthanide ion to the oxygen site of ß-diketone and nitrogen site of auxiliary moieties. The conducting behavior of the complexes is proposed by their optical energy gaps which lie in the range of semiconductors. The emission profiles of the lanthanide complexes demonstrate red and green luminescence owing to the distinctive transitions of Sm3+ and Tb3+ ions, respectively. Energy transfer via antenna effect clearly reveals the effective transfer of energy from the chromophoric moiety to the Ln3+ ion. The prepared conducting and luminescent Ln(iii) complexes might be employed as the emitting component in designing OLEDs.

5.
Luminescence ; 38(1): 56-63, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36511827

ABSTRACT

A series of heteroleptic terbium(III) complexes with fluorinated 2-thenoyltrifluoroacetone (TTFA) and other heteroaromatic units have been synthesized. The developed heteroleptic complexes were inspected via elemental study, cyclic voltammetry, thermal analysis and spectroscopic investigations. Optical band-gap data proposed the conducting property of prepared complexes. The photoluminescence emission profiles illustrated peaks based on terbium(III) cation (Tb3+ ) positioned at ~617, 586, 546 and 491 nm, imputed to 5 D4 to 7 FJ (J = 3,4,5,6) transitions separately. Most intense peak at 546 nm corresponding to 5 D4 → 7 F5 transition is accountable for the green emissive character of developed complexes. The luminous character of complexes reveals the sensitization of Tb3+ by ligands. Color parameters further corroborates the green emanation of Tb3+ complexes. The photometric characteristics of complexes recommended their usages in designing display devices.

6.
Luminescence ; 37(11): 1921-1931, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36044585

ABSTRACT

A series of lanthanide (samarium and terbium) ß-diketonates with heteroaromatic auxiliary ligands was synthesized. The prepared complexes were characterized through electrochemical, thermal, and spectroscopic analyses. Infrared analysis revealed the binding of the respective metal ion to oxygen and nitrogen atoms of diketone and ancillary ligands. Thermogravimetry/differential thermogravimetry profiles provided thermal information and specified the high thermal stability of the prepared complexes. The complexes exhibited the sharp and structured Ln-based emission in the visible region upon irradiation in the ultraviolet range. Photophysical analysis demonstrated the green and orange-red emission due to the respective characteristic transitions of Tb3+ and Sm3+ ions. Photophysical properties affirmed the luminous behaviour of the synthesized complexes. These luminous lanthanide complexes could be used as emitting materials in the design of organic light-emitting diodes.

7.
Luminescence ; 37(8): 1309-1320, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644589

ABSTRACT

Solid ternary europium complexes consisting of fluorinated ß-diketone (thenoyltrifluoroacetone, TTFA) and heteroaromatic bidentate auxiliary ligands were synthesized. The luminescence features of the complexes were estimated using various spectral measurements and clearly proved that the Eu3+ ion is efficiently sensitized by ligands by an antenna effect. Photoluminescence excitation spectra have shown that Eu(III) complexes are excited effectively in the ultraviolet (UV) region and the corresponding emission spectra consist of characteristic peaks attributed to the 5 D0 →7 FJ transitions of the europium ion with the strongest emission peak at 611 nm (5 D0 →7 F2 ). From photoluminescence (PL) data, decay time, Judd-Ofelt parameters, transition rates, and quantum efficiency of the complexes were also determined. The Commission Internationale de l'éclairage (CIE) colour coordinates indicated the bright red emission of ternary europium complexes. Correlated colour temperature values indicated the utilization of these complexes in display devices. Judd-Ofelt and photophysical parameters were also estimated theoretically using LUMPAC software. Various frontier molecular orbitals and their respective energy were determined. These red emissive europium complexes could be utilized for fabricating solid-state lighting systems.

8.
Curr Top Med Chem ; 20(5): 337-348, 2020.
Article in English | MEDLINE | ID: mdl-31994461

ABSTRACT

Several drug molecules have shown low bioavailability and pharmacokinetic profile due to metabolism by enzymes, excretion by the renal system, or due to other physiochemical properties of drug molecules. These problems have resulted in the loss of efficacy and the gain of side effects associated with drug molecules. PEGylation is one of the strategies to overcome these pharmacokinetic issues and has been successful in the clinic. Cell-penetrating Peptides (CPPs) help to deliver molecules across biological membranes and could be used to deliver cargo selectively to the intracellular site or to the drug target. Hence CPPs could be used to improve the efficacy and selectivity of the drug. However, due to the peptidic nature of CPPs, they have a low pharmacokinetic profile. Using PEGylation and CPPs together as a component of a drug delivery system, the and efficacy of drug molecules could be improved. The other important pharmacokinetic properties such as short half-life, solubility, stability, absorption, metabolism, and elimination could be also improved. Here in this review, we summarized PEGylated CPPs or PEGylation based formulations for CPPs used in a drug delivery system for several biomedical applications until August 2019.


Subject(s)
Cell-Penetrating Peptides/pharmacokinetics , Drug Delivery Systems , Polyethylene Glycols/chemistry , Animals , Biological Transport , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Drug Compounding , Humans , Polyethylene Glycols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL