Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38337321

ABSTRACT

This study explores the potential of novel boron nitride (BN) microplatelet composites with combined thermal conduction and electrical insulation properties. These composites are manufactured through Fusion Deposition Modeling (FDM), and their application for thermal management in electronic devices is demonstrated. The primary focus of this work is, therefore, the investigation of the thermoplastic composite properties to show the 3D printing of lightweight polymeric heat sinks with remarkable thermal performance. By comparing various microfillers, including BN and MgO particles, their effects on material properties and alignment within the polymer matrix during filament fabrication and FDM processing are analyzed. The characterization includes the evaluation of morphology, thermal conductivity, and mechanical and electrical properties. Particularly, a composite with 32 wt% of BN microplatelets shows an in-plane thermal conductivity of 1.97 W m-1 K-1, offering electrical insulation and excellent printability. To assess practical applications, lightweight pin fin heat sinks using these composites are designed and 3D printed. Their thermal performance is evaluated via thermography under different heating conditions. The findings are very promising for an efficient and cost-effective fabrication of thermal devices, which can be obtained through extrusion-based Additive Manufacturing (AM), such as FDM, and exploited as enhanced thermal management solutions in electronic devices.

2.
Environ Sci Technol ; 55(11): 7307-7315, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34000801

ABSTRACT

Acidity profoundly affects almost every aspect that shapes the composition of ambient particles and their environmental impact. Thermodynamic analysis of gas-particle composition datasets offers robust estimates of acidity, but they are not available for long periods of time. Fog composition datasets, however, are available for many decades; we develop a thermodynamic analysis to estimate the ammonia in equilibrium with fog water and to infer the pre-fog aerosol pH starting from fog chemical composition and pH. The acidity values from the new method agree with the results of thermodynamic analysis of the available gas-particle composition data. Applying the new method to historical (25 years) fog water composition at the rural station of San Pietro Capofiume (SPC) in the Po Valley (Italy) suggests that the aerosol has been mildly acidic, with its pH decreasing by 0.5-1.5 pH units over the last decades. The observed pH of the fog water also increased 1 unit over the same period. Analysis of the simulated aerosol pH reveals that the aerosol acidity trend is driven by a decrease in aerosol precursor concentrations, and changes in temperature and relative humidity. Currently, NOx controls would be most effective for PM2.5 reduction in the Po valley both during summer and winter. In the future, however, seasonal transitions to the NH3-sensitive region may occur, meaning that the NH3 reduction policy may become increasingly necessary.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Italy , Particulate Matter/analysis , Seasons , Water
3.
Chemosphere ; 240: 124746, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31568946

ABSTRACT

The skin is one of the main organs exposed to airborne particulate matter (PM), which may contain various pollutants linked to a wide range of adverse health endpoints. In the present work, we analyzed the proinflammatory and oxidative effects of some PM components leading to inflammatory responses, cell proliferation or cell death. We investigated four redox-active chemicals, such as Cu (II) metal and quinones generated from polycyclic aromatic hydrocarbons (PAHs), i.e., 9,10 phenanthrenequinone and isomers 1,2 and 1,4 naphthoquinone. We performed in vitro biological tests on human keratinocyte (HaCaT) cells and also acellular assays based on the oxidation of dithiothreitol and ascorbic acid, antioxidants to assess the oxidative potential (OP). We found that treated keratinocytes showed increased activation of the redox-sensitive transcription factor NFκB and increased transcript levels of the NFκB-dependent gene IL8. Moreover, the treatment with Cu(II) and quinones increased the activities and the expression of genes involved in the redox response, SOD1 and GPX, suggesting that PM components induced cellular damage due to redox imbalances. Finally, we found alteration of the mitochondrial ultrastructure and increased apoptosis after 24 h of treatment. The results presented suggest that all of the analyzed pollutant components are able to modulate similar signal transduction pathways, resulting in activation of inflammatory processes in the skin, followed by oxidative damage. Altogether these observations indicate that exposure of skin to air pollutants modifies the redox equilibrium of keratinocytes, which could explain the increased skin damage observed in populations that live in high-pollution cities.


Subject(s)
Air Pollutants/toxicity , Keratinocytes/drug effects , Oxidative Stress/physiology , Particulate Matter/toxicity , Air Pollutants/analysis , Antioxidants/metabolism , Humans , Metals/analysis , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Quinones/metabolism , Signal Transduction/drug effects , Skin/drug effects
4.
Anal Bioanal Chem ; 409(17): 4279-4291, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28516280

ABSTRACT

A novel ultrasound-assisted derivatization followed by GC/MS analysis was developed for the quantification of oxygenated organic species in ambient aerosol. Derivatization parameters mostly influencing the analytical response were investigated, i.e., solvent type, reagent concentration, and reaction duration. Response surface methodology was used to design experiments and a quadratic model was utilized to predict the variables and establish the optimal conditions. The study was performed on standard solutions of 30 compounds representing the major classes of oxygenated compounds typically found in ambient aerosol, i.e., low molecular weight carboxylic acids, sugars, and phenols. In comparison with conventional methods, the optimized procedure uses mild reaction temperature (room temperature instead of 70 °C), reduces the amount of silyl reagent (24 vs. 40 µL), and shortens derivatization times (45 vs. 70 min), participating in the current trend of analytical chemistry towards clean, green methods that reduce costs and decrease pollution. Once optimized, the ultrasound procedure was validated by assessing for repeatability, linearity, detection limits, and derivative stability. For all oxygenated organic species, the proposed method showed a good reproducibility-as the relative standard deviations (RSDs%, n = 5) of intra-day analysis were ≤7% - a good linearity with the correlation coefficients of calibration curves R 2 ≥ 99.8, and low detection limits, ranging from 0.34 to 6.50 ng µL-1; thus it is suitable for its applicability in air quality monitoring. Finally, this method was successfully applied to determine 30 oxygenated organic species in three ambient PM2.5 samples collected at an urban site in Northern Italy in three different seasons. Graphical abstract Ultrasound-assisted derivatization is a green alternative method for GC/MS analysis of oxygenated organic species in atmospheric aerosol towards reduction of energy and reactive consumption.

SELECTION OF CITATIONS
SEARCH DETAIL