Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7377, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191747

ABSTRACT

Physical neuromorphic computing, exploiting the complex dynamics of physical systems, has seen rapid advancements in sophistication and performance. Physical reservoir computing, a subset of neuromorphic computing, faces limitations due to its reliance on single systems. This constrains output dimensionality and dynamic range, limiting performance to a narrow range of tasks. Here, we engineer a suite of nanomagnetic array physical reservoirs and interconnect them in parallel and series to create a multilayer neural network architecture. The output of one reservoir is recorded, scaled and virtually fed as input to the next reservoir. This networked approach increases output dimensionality, internal dynamics and computational performance. We demonstrate that a physical neuromorphic system can achieve an overparameterised state, facilitating meta-learning on small training sets and yielding strong performance across a wide range of tasks. Our approach's efficacy is further demonstrated through few-shot learning, where the system rapidly adapts to new tasks.

2.
IEEE Trans Neural Netw Learn Syst ; 34(2): 824-838, 2023 02.
Article in English | MEDLINE | ID: mdl-34398765

ABSTRACT

"Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.


Subject(s)
Neural Networks, Computer , Neurons , Neurons/physiology , Brain , Machine Learning
3.
PLoS Comput Biol ; 18(8): e1009393, 2022 08.
Article in English | MEDLINE | ID: mdl-35930590

ABSTRACT

We postulate that three fundamental elements underlie a decision making process: perception of time passing, information processing in multiple timescales and reward maximisation. We build a simple reinforcement learning agent upon these principles that we train on a random dot-like task. Our results, similar to the experimental data, demonstrate three emerging signatures. (1) signal neutrality: insensitivity to the signal coherence in the interval preceding the decision. (2) Scalar property: the mean of the response times varies widely for different signal coherences, yet the shape of the distributions stays almost unchanged. (3) Collapsing boundaries: the "effective" decision-making boundary changes over time in a manner reminiscent of the theoretical optimal. Removing the perception of time or the multiple timescales from the model does not preserve the distinguishing signatures. Our results suggest an alternative explanation for signal neutrality. We propose that it is not part of motor planning. It is part of the decision-making process and emerges from information processing on multiple timescales.


Subject(s)
Decision Making , Learning , Decision Making/physiology , Reaction Time/physiology , Reinforcement, Psychology , Reward
SELECTION OF CITATIONS
SEARCH DETAIL