Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 12(4): 046031, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26170261

ABSTRACT

OBJECTIVE: Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. APPROACH: To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. MAIN RESULTS: Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. SIGNIFICANCE: This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.


Subject(s)
Brain-Computer Interfaces , Feedback, Sensory/physiology , Movement/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Visual Perception/physiology , Energy Transfer , Female , Humans , Information Storage and Retrieval/methods , Male , Reproducibility of Results , Sensitivity and Specificity , Time Factors
2.
J Neural Eng ; 10(3): 036015, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23611833

ABSTRACT

OBJECTIVE: Our goal was to identify spatial filtering methods that would improve decoding of continuous arm movements from epidural field potentials as well as demonstrate the use of the epidural signals in a closed-loop brain-machine interface (BMI) system in monkeys. APPROACH: Eleven spatial filtering options were compared offline using field potentials collected from 64-channel high-density epidural arrays in monkeys. Arrays were placed over arm/hand motor cortex in which intracortical microelectrodes had previously been implanted and removed leaving focal cortical damage but no lasting motor deficits. Spatial filters tested included: no filtering, common average referencing (CAR), principle component analysis, and eight novel modifications of the common spatial pattern (CSP) algorithm. The spatial filtering method and decoder combination that performed the best offline was then used online where monkeys controlled cursor velocity using continuous wrist position decoded from epidural field potentials in real time. MAIN RESULTS: Optimized CSP methods improved continuous wrist position decoding accuracy by 69% over CAR and by 80% compared to no filtering. Kalman decoders performed better than linear regression decoders and benefitted from including more spatially-filtered signals but not from pre-smoothing the calculated power spectra. Conversely, linear regression decoders required fewer spatially-filtered signals and were improved by pre-smoothing the power values. The 'position-to-velocity' transformation used during online control enabled the animals to generate smooth closed-loop movement trajectories using the somewhat limited position information available in the epidural signals. The monkeys' online performance significantly improved across days of closed-loop training. SIGNIFICANCE: Most published BMI studies that use electrocorticographic signals to decode continuous limb movements either use no spatial filtering or CAR. This study suggests a substantial improvement in decoding accuracy could be attained by using our new version of the CSP algorithm that extends the traditional CSP method for use with continuous limb movement data.


Subject(s)
Arm/physiology , Brain-Computer Interfaces , Electrodes, Implanted , Electroencephalography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Movement/physiology , Algorithms , Animals , Electroencephalography/instrumentation , Haplorhini , Signal Processing, Computer-Assisted
3.
J Neural Eng ; 8(2): 025016, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21436529

ABSTRACT

Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.


Subject(s)
Algorithms , Brain Mapping/methods , Electroencephalography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Movement/physiology , Task Performance and Analysis , Humans , Pattern Recognition, Automated/methods , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL