Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Front Microbiol ; 11: 586601, 2020.
Article En | MEDLINE | ID: mdl-33042102

Cyanobacteria, the largest phylum of prokaryotes, perform oxygenic photosynthesis and are regarded as the ancestors of the plant chloroplast and the purveyors of the oxygen and biomass that shaped the biosphere. Nowadays, cyanobacteria are attracting a growing interest in being able to use solar energy, H2O, CO2 and minerals to produce biotechnologically interesting chemicals. This often requires the introduction and expression of heterologous genes encoding the enzymes that are not present in natural cyanobacteria. However, only a handful of model strains with a well-established genetic system are being studied so far, leaving the vast biodiversity of cyanobacteria poorly understood and exploited. In this study, we focused on the robust unicellular cyanobacterium Cyanothece PCC 7425 that has many interesting attributes, such as large cell size; capacity to fix atmospheric nitrogen (under anaerobiosis) and to grow not only on nitrate but also on urea (a frequent pollutant) as the sole nitrogen source; capacity to form CO2-sequestrating intracellular calcium carbonate granules and to produce various biotechnologically interesting products. We demonstrate for the first time that RSF1010-derived plasmid vectors can be used for promoter analysis, as well as constitutive or temperature-controlled overproduction of proteins and analysis of their sub-cellular localization in Cyanothece PCC 7425. These findings are important because no gene manipulation system had been developed for Cyanothece PCC 7425, yet, handicapping its potential to serve as a model host. Furthermore, using this toolbox, we engineered Cyanothece PCC 7425 to produce the high-value terpene, limonene which has applications in biofuels, bioplastics, cosmetics, food and pharmaceutical industries. This is the first report of the engineering of a Cyanothece strain for the production of a chemical and the first demonstration that terpene can be produced by an engineered cyanobacterium growing on urea as the sole nitrogen source.

2.
J Exp Bot ; 71(9): 2661-2669, 2020 05 09.
Article En | MEDLINE | ID: mdl-32060533

The plastid terminal oxidase (PTOX) is a plastohydroquinone:oxygen oxidoreductase that shares structural similarities with alternative oxidases (AOXs). Multiple roles have been attributed to PTOX, such as involvement in carotene desaturation, a safety valve function, participation in the processes of chlororespiration, and setting the redox poise for cyclic electron transport. PTOX activity has been previously shown to depend on its localization at the thylakoid membrane. Here we investigate the dynamics of PTOX localization dependent on the proton motive force. Infiltrating illuminated leaves with uncouplers led to a partial dissociation of PTOX from the thylakoid membrane. In vitro reconstitution experiments showed that the attachment of purified recombinant maltose-binding protein (MBP)-OsPTOX to liposomes and isolated thylakoid membranes was strongest at slightly alkaline pH values in the presence of lower millimolar concentrations of KCl or MgCl2. In Arabidopsis thaliana overexpressing green fluorescent protein (GFP)-PTOX, confocal microscopy images showed that PTOX formed distinct spots in chloroplasts of dark-adapted or uncoupler-treated leaves, while the protein was more equally distributed in a network-like structure in the light. We propose a dynamic PTOX association with the thylakoid membrane depending on the presence of a proton motive force.


Arabidopsis/enzymology , Chloroplasts , Photosynthesis , Chloroplasts/enzymology , Electron Transport , Oxidoreductases/metabolism
3.
Chemistry ; 26(22): 4988-4996, 2020 Apr 16.
Article En | MEDLINE | ID: mdl-31841248

Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C-H (and N-H) activation processes occurring at the surface of metallic nanoclusters.


Deuterium/chemistry , Heterocyclic Compounds/chemistry , Hydrogen/chemistry , Imidazoles/chemistry , Ruthenium/chemistry , Catalysis
4.
Angew Chem Int Ed Engl ; 58(15): 4891-4895, 2019 04 01.
Article En | MEDLINE | ID: mdl-30768844

A general approach for the efficient hydrogen-isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D2 or T2 as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC-MS quantification.


Deuterium Exchange Measurement , Deuterium/chemistry , Hydrogen/chemistry , Oligonucleotides/chemistry , Pharmaceutical Preparations/chemistry , Chromatography, Liquid , Mass Spectrometry
5.
J Am Chem Soc ; 141(2): 780-784, 2019 01 16.
Article En | MEDLINE | ID: mdl-30586301

A copper-catalyzed procedure enabling dynamic carbon isotope exchange is described. Utilizing the universal precursor [14C]CO2, this protocol allows to insert, in one single step, the desired carbon tag into carboxylic acids with no need of structural modifications. Reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the access to carboxylic acids containing drugs and accelerate early 14C-based ADME studies supporting drug development.


Carbon Dioxide/chemistry , Carboxylic Acids/chemistry , Radiopharmaceuticals/chemistry , Carbon Isotopes/chemistry , Carbon Radioisotopes/chemistry , Carboxylic Acids/chemical synthesis , Catalysis , Copper/chemistry , Isotope Labeling/methods , Radiopharmaceuticals/chemical synthesis
6.
Front Oncol ; 8: 517, 2018.
Article En | MEDLINE | ID: mdl-30483475

The efficacy of an antitumoral vaccine relies both on the choice of the antigen targeted and on its design. The tumor antigen survivin is an attractive target to develop therapeutic cancer vaccines because of its restricted over-expression and vital functions in most human tumors. Accordingly, several clinical trials targeting survivin in various cancer indications have been conducted. Most of them relied on short peptide-based vaccines and showed promising, but limited clinical results. In this study, we investigated the immunogenicity and therapeutic efficacy of a new long synthetic peptide (LSP)-based cancer vaccine targeting the tumor antigen survivin (SVX). This SVX vaccine is composed of three long synthetic peptides containing several CD4+ and CD8+ T-cell epitopes, which bind to various HLA class II and class I molecules. Studies in healthy individuals showed CD4+ and CD8+ T-cell immunogenicity of SVX peptides in human, irrespective of the individual's HLA types. Importantly, high frequencies of spontaneous T-cell precursors specific to SVX peptides were also detected in the blood of various cancer patients, demonstrating the absence of tolerance against these peptides. We then demonstrated SVX vaccine's high therapeutic efficacy against four different established murine tumor models, associated with its capacity to generate both specific cytotoxic CD8+ and multifunctional Th1 CD4+ T-cell responses. When tumors were eradicated, generated memory T-cell responses protected against rechallenge allowing long-term protection against relapses. Treatment with SVX vaccine was also found to reshape the tumor microenvironment by increasing the tumor infiltration of both CD4+ and CD8+ T cells but not Treg cells therefore tipping the balance toward a highly efficient immune response. These results highlight that this LSP-based SVX vaccine appears as a promising cancer vaccine and warrants its further clinical development.

7.
Blood Adv ; 1(21): 1842-1847, 2017 Sep 26.
Article En | MEDLINE | ID: mdl-29296830

We investigated the frequency and subset origin of circulating factor VIII (FVIII)-specific CD4 T cells in healthy donors. Total CD4 T cells and purified CD4 T-cell subsets were stimulated with FVIII-loaded autologous dendritic cells and challenged for specificity in interferon-γ enzyme-linked immunospots. The number of specific T-cell lines allowed estimation of the frequency of T cells circulating in the blood of the donors. All the 16 healthy donors generated strong in vitro T-cell responses, leading to the generation of 154 FVIII-specific T-cell lines. The mean frequency of FVIII-specific CD4 T cells in healthy donors was similar to that of T cells specific for foreign antigens and greater than that of T cells specific for known immunogenic therapeutic proteins. Normal levels of endogenous FVIII in healthy donors therefore do not prevent a significant escape of FVIII-specific CD4 T cells from negative thymic selection. FVIII-specific T cells mainly originated from both the naïve and central memory cell subsets, but their frequencies remained low as compared with those of cells specific for foreign antigens in immunized donors. The observation of a spontaneous generation of FVIII-specific memory T cells without a global expansion suggests peculiar peripheral tolerance mechanisms to FVIII in healthy donors.

8.
J Immunol ; 195(4): 1891-901, 2015 Aug 15.
Article En | MEDLINE | ID: mdl-26136431

Cyclin B1 (CCNB1) is considered as a potential target for a cancer vaccine, as it is overexpressed in many malignant cells, while being transiently expressed in normal cells. To evaluate the CD4 T cell response to CCNB1, we derived T cell lines by multiple weekly rounds of stimulation with recombinant CCNB1 of T cells collected in healthy donors (long-term T cell assays). T cell lines were specific for 15 immunodominant peptides and derived preferentially from naive T cells. From 74 overlapping peptides, 20 peptides were selected for their broad specificity of binding to HLA class II molecules and included most of the immunodominant epitopes. They primed in vitro a large number of specific CD4 T cell lines in all the donors. Immunodominant epitopes were the most efficacious in long-term T cell assays, both in terms of number of specific T cell lines and number of responding donors. The 20 peptides were also submitted to short-term T cell assays using cells collected in healthy and cancer patients with the aim to evaluate the memory response. The recognized peptides differed from the immunodominant peptides and were part of the best promiscuous peptides. We also observed pre-existing CCNB1-specifc IgG Abs in both healthy and cancer donors. Long- and short-term T cell assays revealed that CCNB1 contained many CD4 T cell epitopes, which are differentially recognized by pre-existing naive and memory CD4 T cells. These observations are of value for the design of cancer vaccines.


CD4-Positive T-Lymphocytes/immunology , Cyclin B1/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Neoplasms/immunology , Antibodies/immunology , Case-Control Studies , Cell Line , Epitopes, T-Lymphocyte/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Immunodominant Epitopes/immunology , Immunoglobulin G/immunology , Peptides/immunology , Peptides/metabolism , Protein Binding , T-Cell Antigen Receptor Specificity/immunology
9.
FEBS Lett ; 588(24): 4613-9, 2014 Dec 20.
Article En | MEDLINE | ID: mdl-25447534

Despite the physiological and pharmacological importance of the α1A-adrenoreceptor, the mode of interactions of classical agonists and radioactive ligands with this receptor is not yet clearly defined. Here, we used mutagenesis studies and binding experiments to evaluate the importance of 11 receptor sites for the binding of (125)I-HEAT, (3)H-prazosin and epinephrine. Only one residue (F312) commonly interacts with the three molecules, and, surprisingly, D106 interacts only with epinephrine in a moderate way. Our docking model shows that prazosin and HEAT are almost superimposed into the orthosteric pocket with their tetralone and quinazoline rings close to the phenyl ring of the agonist.


Binding, Competitive , Epinephrine/metabolism , Prazosin/metabolism , Receptors, Adrenergic, alpha-1/chemistry , Receptors, Adrenergic, alpha-1/metabolism , Tetralones/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Molecular Docking Simulation , Protein Conformation , Substrate Specificity
10.
Biochimie ; 103: 109-17, 2014 Aug.
Article En | MEDLINE | ID: mdl-24793485

Composition of mamba's venom is quite atypical and characterized by the presence of a large diversity of three-finger fold toxins (3FTx) interacting with various enzymes, receptors and ion channels. In particular, 3FTx from mambas display the unique property to interact with class A GPCRs, sometimes with a high affinity and selectivity. A screening of five of these toxins (MT1, MT3, MT7, ρ-Da1a and ρ-Da1b) on 29 different subtypes of bioaminergic receptors, using competition binding experiments, highlights the diversity of their pharmacological profiles. These toxins may display either absolute selectivity for one receptor subtype or a polypharmacological property for various bioaminergic receptors. Nevertheless, adrenoceptor is the main receptor family targeted by these toxins. Furthermore, a new receptor target was identified for 3FTx and toxins in general, the ρ-Da1b interacting competitively with the human dopamine D3 receptor in the micromolar range. This result expands the diversity of GPCRs targeted by toxins and more generally highlights the multipotent interacting property of 3FTx. Phylogenic analyzes of these toxins show that muscarinic, adrenergic and dopaminergic toxins may be pooled in one family called aminergic toxins, this family coming probably from a specific radiation of ligands present in mamba venoms.


Elapid Venoms/metabolism , Elapidae , Phylogeny , Polypharmacology , Receptors, Biogenic Amine/metabolism , Amino Acid Sequence , Animals , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Humans , Molecular Sequence Data
11.
PLoS One ; 8(7): e68841, 2013.
Article En | MEDLINE | ID: mdl-23935897

ρ-Da1a is a three-finger fold toxin from green mamba venom that is highly selective for the α1A-adrenoceptor. This toxin has atypical pharmacological properties, including incomplete inhibition of (3)H-prazosin or (125)I-HEAT binding and insurmountable antagonist action. We aimed to clarify its mode of action at the α1A-adrenoceptor. The affinity (pKi 9.26) and selectivity of ρ-Da1a for the α1A-adrenoceptor were confirmed by comparing binding to human adrenoceptors expressed in eukaryotic cells. Equilibrium and kinetic binding experiments were used to demonstrate that ρ-Da1a, prazosin and HEAT compete at the α1A-adrenoceptor. ρ-Da1a did not affect the dissociation kinetics of (3)H-prazosin or (125)I-HEAT, and the IC50 of ρ-Da1a, determined by competition experiments, increased linearly with the concentration of radioligands used, while the residual binding by ρ-Da1a remained stable. The effect of ρ-Da1a on agonist-stimulated Ca(2+) release was insurmountable in the presence of phenethylamine- or imidazoline-type agonists. Ten mutations in the orthosteric binding pocket of the α1A-adrenoceptor were evaluated for alterations in ρ-Da1a affinity. The D106(3.32)A and the S188(5.42)A/S192(5.46)A receptor mutations reduced toxin affinity moderately (6 and 7.6 times, respectively), while the F86(2.64)A, F288(6.51)A and F312(7.39)A mutations diminished it dramatically by 18- to 93-fold. In addition, residue F86(2.64) was identified as a key interaction point for (125)I-HEAT, as the variant F86(2.64)A induced a 23-fold reduction in HEAT affinity. Unlike the M1 muscarinic acetylcholine receptor toxin MT7, ρ-Da1a interacts with the human α1A-adrenoceptor orthosteric pocket and shares receptor interaction points with antagonist (F86(2.64), F288(6.51) and F312(7.39)) and agonist (F288(6.51) and F312(7.39)) ligands. Its selectivity for the α1A-adrenoceptor may result, at least partly, from its interaction with the residue F86(2.64), which appears to be important also for HEAT binding.


Adrenergic alpha-1 Receptor Agonists/chemistry , Adrenergic alpha-1 Receptor Antagonists/chemistry , Elapid Venoms/chemistry , Prazosin/chemistry , Receptors, Adrenergic, alpha-1/chemistry , Tetralones/chemistry , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , Binding Sites , Binding, Competitive , CHO Cells , Cricetulus , Elapid Venoms/pharmacology , Elapidae/metabolism , Humans , Kinetics , Ligands , Models, Molecular , Mutation , Prazosin/pharmacology , Protein Binding , Radioligand Assay , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/metabolism , Tetralones/pharmacology
12.
PLoS One ; 7(6): e39166, 2012.
Article En | MEDLINE | ID: mdl-22720062

Protein engineering approaches are often a combination of rational design and directed evolution using display technologies. Here, we test "loop grafting," a rational design method, on three-finger fold proteins. These small reticulated proteins have exceptional affinity and specificity for their diverse molecular targets, display protease-resistance, and are highly stable and poorly immunogenic. The wealth of structural knowledge makes them good candidates for protein engineering of new functionality. Our goal is to enhance the efficacy of these mini-proteins by modifying their pharmacological properties in order to extend their use in imaging, diagnostics and therapeutic applications. Using the interaction of three-finger fold toxins with muscarinic and adrenergic receptors as a model, chimeric toxins have been engineered by substituting loops on toxin MT7 by those from toxin MT1. The pharmacological impact of these grafts was examined using binding experiments on muscarinic receptors M1 and M4 and on the α(1A)-adrenoceptor. Some of the designed chimeric proteins have impressive gain of function on certain receptor subtypes achieving an original selectivity profile with high affinity for muscarinic receptor M1 and α(1A)-adrenoceptor. Structure-function analysis supported by crystallographic data for MT1 and two chimeras permits a molecular based interpretation of these gains and details the merits of this protein engineering technique. The results obtained shed light on how loop permutation can be used to design new three-finger proteins with original pharmacological profiles.


Receptors, Adrenergic/drug effects , Receptors, Muscarinic/drug effects , Toxins, Biological/toxicity , Amino Acid Sequence , Crystallization , Ligands , Models, Molecular , Molecular Sequence Data , Protein Engineering , Sequence Homology, Amino Acid
13.
Biochimie ; 94(2): 461-70, 2012 Feb.
Article En | MEDLINE | ID: mdl-21889567

Long-sarafotoxins (l-SRTXs) have recently been identified in both the venom of Atractaspis microlepidota and that of Atractaspis irregularis. They are characterized by different C-terminus extensions that follow the invariant Trp21, which plays a crucial role in endothelin-receptor binding. We initially determined the toxicity and three-dimensional structures of two chemically synthesized l-SRTXs that have different C-terminus extensions, namely SRTX-m (24 aa, including extension "D-E-P") and SRTX-i3 (25 aa, including extension "V-N-R-N"). Both peptides were shown to be highly toxic in mice and displayed the cysteine-stabilized α-helical motif that characterizes endothelins and short-SRTXs, to which a longer C-terminus with variable flexibility is added. To discern the functional and pharmacological consequences of the supplementary amino acids, different chimerical as well as truncated forms of SRTX were designed and synthesized. Thus, we either removed the extra-C-terminal residues of SRTX-m or i3, or grafted the latter onto the C-terminal extremity of a short-SRTX (s-SRTX) (ie. SRTX-b). Our competitive binding assays where SRTXs competed for iodinated endothelin-1 binding to cloned ET(A) and ET(B) receptor subtypes over-expressed in CHO cells, revealed the essential role of the C-terminus extensions for ET-receptor recognition. Indeed, l-SRTXs displayed an affinity three to four orders of magnitude lower as compared to SRTX-b for the two receptor subtypes. Moreover, grafting the C-terminus extension to SRTX-b induced a drastic decrease in affinity, while its removal (truncated l-SRTXs) yielded an affinity for ET-receptors similar to that of s-SRTXs. Furthermore, we established by intracellular Ca(2+) measurements that l-SRTXs, as well as s-SRTXs, display agonistic activities. We thus confirmed in these functional assays the major difference in potency for these two SRTX families as well as the crucial role of the C-terminus extension in their various pharmacological profiles. Finally, one of the chimeric toxin synthesized in this study appears to be one of the most potent and selective ligand of the ET(B) receptor known to date.


Endothelin-1/metabolism , Peptides/chemical synthesis , Receptors, Endothelin/agonists , Viper Venoms , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding, Competitive , CHO Cells , Calcium/metabolism , Cricetinae , Injections, Intravenous , Ion Transport/drug effects , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptides/toxicity , Protein Binding , Protein Engineering , Protein Structure, Secondary , Receptors, Endothelin/metabolism , Structure-Activity Relationship , Survival Rate , Transfection , Vasoconstrictor Agents/chemical synthesis , Vasoconstrictor Agents/toxicity , Viper Venoms/chemical synthesis , Viper Venoms/toxicity
14.
Toxicon ; 58(6-7): 455-63, 2011 Nov.
Article En | MEDLINE | ID: mdl-21906611

Muscarinic toxins isolated from the venom of Dendroaspis snakes may interact with a high affinity, large selectivity and various functional properties with muscarinic receptors. Therefore, these toxins are invaluable tools for studying the physiological role, molecular functioning and structural organization of the five subtypes of these G-Protein Coupled Receptors. We review the data on the most relevant results dealing with the isolation/identification, mode of action, structure/function and exploitation of these toxins and finally highlight the unresolved issues related to their pharmacological studies.


Elapid Venoms/toxicity , Elapidae , Receptors, Muscarinic/drug effects , Toxins, Biological/toxicity , Amino Acid Sequence , Animals , Calcium/metabolism , Elapid Venoms/chemistry , Molecular Sequence Data , Structure-Activity Relationship
15.
J Biol Chem ; 286(36): 31661-75, 2011 Sep 09.
Article En | MEDLINE | ID: mdl-21685390

The snake toxin MT7 is a potent and specific allosteric modulator of the human M1 muscarinic receptor (hM1). We previously characterized by mutagenesis experiments the functional determinants of the MT7-hM1 receptor interaction (Fruchart-Gaillard, C., Mourier, G., Marquer, C., Stura, E., Birdsall, N. J., and Servent, D. (2008) Mol. Pharmacol. 74, 1554-1563) and more recently collected evidence indicating that MT7 may bind to a dimeric form of hM1 (Marquer, C., Fruchart-Gaillard, C., Mourier, G., Grandjean, O., Girard, E., le Maire, M., Brown, S., and Servent, D. (2010) Biol. Cell 102, 409-420). To structurally characterize the MT7-hM1 complex, we adopted a strategy combining double mutant cycle experiments and molecular modeling calculations. First, thirty-three ligand-receptor proximities were identified from the analysis of sixty-one double mutant binding affinities. Several toxin residues that are more than 25 Å apart still contact the same residues on the receptor. As a consequence, attempts to satisfy all the restraints by docking the toxin onto a single receptor failed. The toxin was then positioned onto two receptors during five independent flexible docking simulations. The different possible ligand and receptor extracellular loop conformations were described by performing simulations in explicit solvent. All the docking calculations converged to the same conformation of the MT7-hM1 dimer complex, satisfying the experimental restraints and in which (i) the toxin interacts with the extracellular side of the receptor, (ii) the tips of MT7 loops II and III contact one hM1 protomer, whereas the tip of loop I binds to the other protomer, and (iii) the hM1 dimeric interface involves the transmembrane helices TM6 and TM7. These results structurally support the high affinity and selectivity of the MT7-hM1 interaction and highlight the atypical mode of interaction of this allosteric ligand on its G protein-coupled receptor target.


Elapid Venoms/chemistry , Models, Molecular , Receptor, Muscarinic M1/chemistry , Receptor, Muscarinic M1/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Computer Simulation , Humans , Ligands , Mutagenesis , Protein Binding , Protein Multimerization , Receptor, Muscarinic M1/genetics
16.
Eur J Pharmacol ; 655(1-3): 1-8, 2011 Mar 25.
Article En | MEDLINE | ID: mdl-21262225

Metal ions have a major role in human health, and interact with many classes of receptors including the G-protein coupled receptors. In the peripheral system, zinc mainly accumulates in the soft prostate organ and, with copper, influences prostate disease progression, from normal to hypertrophic or cancerous states. The development of these pathologies may be influenced by the α(1A)-adrenoceptor, the principal regulator of prostate tonicity. There is currently no information on possible interactions between metals and the α(1A)-adrenoceptor. We therefore studied the effects of several mono- and divalent ions on this receptor subtype using binding and functional experiments performed on expressed cloned human α(1A)-adrenoceptor. Regardless of the counter anion used, Zn(2+) and Cu(2+) interact with α(1A)-adrenoceptor with apparent affinities in the low micromolar range. In addition, using specific binding experiments, we established that these ions acted as negative allosteric ligands on prazosin/α(1A)-adrenoceptor interaction, but in a different manner from the allosteric modulator 5-(N-ethyl-N-isopropyl)-amiloride, suggesting distinct mode of interaction. In addition, the presence of Cu(2+) weakly decreased epinephrine affinity, whereas the addition of Zn(2+) shifted to the left the epinephrine binding curve, revealing a positive allosteric effect but only on half of the binding site. Finally, cell-based functional experiments demonstrated that Zn(2+) and Cu(2+) antagonized epinephrine activation in an insurmountable manner, by reducing agonist efficacy without any shift in the epinephrine activation curves. This study shows the interactions between metal ions and the α(1A)-adrenoceptor with affinities compatible with physiological concentrations and suggests that zinc and copper may have a biological role in prostate function.


Copper/metabolism , Copper/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Zinc/metabolism , Zinc/pharmacology , Adrenergic alpha-1 Receptor Agonists/metabolism , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/metabolism , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Animals , COS Cells , Chlorocebus aethiops , Humans , Kinetics , Prazosin/metabolism , Protein Binding
...