Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Reprod Dev ; 69(2): 95-102, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36775285

ABSTRACT

This in vivo study aimed to investigate local and systemic immune responses induced by sperm in cows after artificial insemination (AI). Initially, 12 multiparous Japanese Black cows were subjected to intrauterine AI (AI group, n = 6) or saline infusion (control group, n = 6). The uterine body and horn ipsilateral to the ovulatory follicle were mini-flushed with 2 ml of RPMI-1640 medium at different time points (0, 1, 6, 10, 24, 48 h, and 7 days after AI), centrifuged, and the sediments were examined under a light microscope. Vaginal smears were prepared at 0, 1, 6, and 10 h after AI to investigate the sperm backflow. Subsequently, another experiment was conducted by assigning cows to three groups: intrauterine AI (AI group, n = 5), heat-inactivated AI (Heat-AI group, n = 5), or saline infusion (control group, n = 5). Blood samples were collected, and polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear cells (PBMCs) were separated and analyzed for gene expression using real-time PCR. The results showed that most sperm were rapidly transported either forward into the uterine horn or backward into the vagina within 1 h after AI. The PMNs migrated into the uterine lumen 6 hours after AI. Only active sperm-induced proinflammatory responses in PMNs and PBMCs via upregulation of TNFa, IL8, IL1B, and PGES and downregulation of IL10 at 6 h after AI. These data provide evidence that sperm generate transient proinflammatory responses locally in the uterus and systemically in the peripheral immune cells, which may be prerequisites for uterine clearance, embryo receptivity, and implantation in cows.


Subject(s)
Leukocytes, Mononuclear , Semen , Female , Cattle , Male , Animals , Uterus/physiology , Spermatozoa/metabolism , Insemination, Artificial/veterinary , Insemination, Artificial/methods
2.
Am J Reprod Immunol ; 88(3): e13592, 2022 09.
Article in English | MEDLINE | ID: mdl-35785505

ABSTRACT

We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus.


Subject(s)
Interferon Type I , Leukocytes, Mononuclear , Animals , Apolipoproteins/metabolism , Cattle , Cytokines/metabolism , Endometrium/metabolism , Estrus , Female , Leukocytes, Mononuclear/metabolism , Proteomics
3.
Reprod Toxicol ; 107: 81-89, 2022 01.
Article in English | MEDLINE | ID: mdl-34864119

ABSTRACT

Zearalenone (ZEN)-contaminated diets induce detrimental effects on the bovine reproduction. Recently, we reported that active sperm induce pro-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. This study aimed to investigate the impact of presence of ZEN on the sperm-uterine crosstalk in vitro. BEECs monolayers were stimulated by ZEN (10, 100, and 1000 ng/mL) for 0, 3, 6, 12, or 24 h and gene expressions were analyzed by real-time PCR. Moreover, BEECs were pre-exposed to ZEN (10, 100, and 1000 ng/mL) for 24 h then, co-incubated with sperm for 6 h. Conditioned media (CM) from a sperm-BEECs co-culture, after pre-exposure to ZEN, were harvested and exploited to challenge either polymorphonuclear cells (PMNs) or sperm. Both PMNs phagocytic activity toward sperm and sperm motility parameters were then assessed. Results showed that ZEN alone induced pro-inflammatory responses in BEECs through the induction of mRNA expressions of pro-inflammatory cytokines (TNFA and IL1B) and PGES1 at different time points. Pre-exposure of BEECs to ZEN, amplified the sperm-triggered upregulation of pro-inflammatory cytokines (TNFA and IL1B) and chemokine IL8 mRNA abundance in BEECs. Sperm-BEECs conditioned media, primed by ZEN, stimulated the PMNs phagocytosis for sperm whereas suppressed sperm motility parameters. Taken together, these findings indicate that the presence of ZEN augments the pro-inflammatory cascade triggered by sperm in BEECs, provokes PMNs phagocytosis for sperm, and reduces sperm motility parameters. Such immunological reactions may create a hostile environment for sperm competence and survival in the bovine uterus, thus impair fertility.


Subject(s)
Estrogens, Non-Steroidal/toxicity , Inflammation , Sperm Motility/drug effects , Spermatozoa/drug effects , Uterus , Zearalenone/toxicity , Animals , Cattle , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Epithelial Cells/drug effects , Female , Inflammation/genetics , Male , Neutrophils/physiology , Phagocytosis , Spermatozoa/physiology , Uterus/cytology
4.
Front Genet ; 12: 676791, 2021.
Article in English | MEDLINE | ID: mdl-34262596

ABSTRACT

This study aimed to characterize proteins and exosomal microRNAs (miRNAs) in the uterine flushings (UF) of cows associated with Day 7 (D7) pregnancy using the embryo donor cows of the embryo transfer program. Superovulated cows either were inseminated (AI cows) or remained non-inseminated (Ctrl cows). UF was collected on D7 in the presence of multiple embryos (AI cows) or without embryos (Ctrl cows) and subjected to isobaric tags for relative and absolute quantification protein analysis. A total of 336 proteins were identified, of which 260 proteins were more than 2-fold higher in AI cows than Ctrl cows. Gene ontology analysis revealed that many differentially expressed proteins were involved in "neutrophil-related" and "extracellular vesicular exosome-related" terms. In silico analysis of proteins with higher concentrations in the UF of AI identified 18 uniquely expressed proteins. Exosomes were isolated from the UF, from which RNA was subjected to miRNA-seq, identifying 37 miRNAs. Of these, three miRNAs were lower, and six miRNAs were higher in the UF of AI cows than those of Ctrl ones. The principal component analysis displayed a close association in miRNA and protein between bta-miR-29a, bta-miR-199b, SUGT1, and PPID. In addition, the receiver operating characteristic curve analysis showed that SUGT1 was the best predictor for the presence of embryos in the uterus. These findings suggest that the presence of multiple D7 embryos in the uterus can lead to significant changes in the protein composition and exosomal miRNA contents of UF, which could mediate innate immunological interactions between the pre-hatching embryo and the uterus in cows.

5.
Biochem Biophys Res Commun ; 553: 37-43, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33765557

ABSTRACT

Previously, we reported that the presence of multiple day 7 (D7) bovine embryos in the uterus induces systemic immune responses in circulating polymorphonuclear neutrophils (PMNs), but with unknown mechanism. Thus, this study aimed to investigate the direct impact of D7 bovine embryo on PMNs' immune responses in vitro and whether these PMNs can amplify and transfer embryo signals further to another PMN population. PMNs were directly stimulated by embryo culture media (ECM) or interferon tau (IFNT) (10 ng/ml) followed by evaluating mRNA expression by real-time PCR and phenotypic analysis by flow cytometry. To test whether PMNs can transfer embryo signals to a new PMN population, PMNs triggered by ECM or IFNT, were thoroughly washed and diluted to remove any media components, and again were incubated in fresh culture media for 3 h, from which culture supernatants were collected and used as PMN conditioned media (CM) to stimulate a new PMN population. Similar to ECM, IFNT directly stimulated expressions of IFNs (IFNA, IFNG), interferon-stimulated genes (ISGs; OAS1, ISG15, MX1), STAT1, TGFB and IL8, and downregulated TNFA in PMNs. Flow cytometrical analyses demonstrated that IFNT stimulated expressions of pregnancy-related phenotypic markers, CD16 and arginase-1 (ARG1), in PMNs. Most importantly, PMN CM induced ISGs and STAT1 mRNA in fresh PMNs. Since IFNT directly upregulated IFNA expression in PMNs, the impact of IFNA on PMNs' immune responses was further tested. Stimulation of PMNs with IFNA, especially at a low level (1 pg/ml), induced IFNT-like immune responses comparable to those induced by PMN CM. Together, these findings indicated that D7 bovine embryos induce direct anti-inflammatory responses with upregulation of ISGs expressions in PMNs mainly via IFNT. Additionally, PMNs can amplify and transfer embryo signals to a new PMN population in a cell-to-cell communication mechanism possibly mediated in part by IFNA. Such a novel immunological crosstalk might contribute to embryo tolerance and pregnancy establishment in cattle.


Subject(s)
Embryo, Mammalian/immunology , Embryo, Mammalian/metabolism , Gene Expression Regulation , Interferon Type I/immunology , Neutrophils/immunology , Pregnancy Proteins/immunology , Pregnancy/genetics , Pregnancy/immunology , Animals , Arginase/genetics , Cattle , Culture Media, Conditioned/pharmacology , Female , Gene Expression Regulation/drug effects , Immunity, Innate , In Vitro Techniques , Interferon Type I/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phenotype , Pregnancy Proteins/pharmacology , Receptors, IgG/genetics
6.
Reprod Fertil Dev ; 34(2): 139-148, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35231265

ABSTRACT

During the passage through the female reproductive tract, sperm interact with various compartments and their immune systems. The immune system that protects the female against pathogens also could destroy sperm or prevent them from reaching the site of fertilisation. In particular, the uterine innate immune response is crucial from the perspectives of both the sperm and the uterus. Following insemination, sperm immediately start to trigger inflammation in the uterus by entering uterine glands and activating an innate immune response. In cattle, the activation occurs mainly via TLR2 signalling, if not the only one, between sperm and the uterine epithelium lining the glands. This acute immune response is manifested as the upregulation of mRNA expression of IL8, TNFA, IL1B , and PGES . As a consequence, many sperm are trapped by polymorphonuclear neutrophils, the first and major component of innate immunity. The sperm-induced uterine innate immune responses apparently serve to clear the uterus of excess sperm and, importantly, prepare the endometrium for implantation. Pathophysiological conditions in the uterus seriously disrupt this phenomenon, and thus could directly decrease fertility.


Subject(s)
Spermatozoa , Toll-Like Receptor 2 , Animals , Cattle , Endometrium/metabolism , Female , Immune System , Immunity, Innate , Male , Spermatozoa/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Uterus
7.
Mol Reprod Dev ; 87(10): 1059-1069, 2020 10.
Article in English | MEDLINE | ID: mdl-32914493

ABSTRACT

We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep(-) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep(-) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep(-) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.


Subject(s)
Cell Communication/immunology , Fallopian Tubes , Spermatozoa/metabolism , Toll-Like Receptor 2/physiology , Animals , Cattle , Cell Communication/genetics , Cells, Cultured , Epithelial Cells/immunology , Epithelial Cells/metabolism , Fallopian Tubes/immunology , Fallopian Tubes/metabolism , Female , Immunity/physiology , Male , Sperm Capacitation/physiology , Spermatozoa/immunology
8.
Biochem Biophys Res Commun ; 532(1): 101-107, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32828539

ABSTRACT

Uterine infection with bacteria and the release of peptidoglycan (PGN), antigenic cell wall components of both Gram-negative and Gram-positive bacteria, can cause early pregnancy losses in ruminants, but the associated mechanisms remain unsolved. Day 7 blastocyst starts to secrete a minute amount of interferon-tau (IFNT) in the uterine horn which is required for early stage of maternal recognition of pregnancy (MRP) in ruminants, and it induces interferon stimulated genes (ISGs) for driving uterine receptivity in cows. This study investigated if PGN disrupts IFNT response through modulation of endometrial ISGs expressions. Cultured bovine endometrial epithelial cells (BEECs) were treated with embryo culture medium (ECM) or IFNT (1 ng/ml) in the presence or absence of a low level of PGN (10 pg/ml) for 24 h. A real-time PCR analyses revealed that the presence of PGN suppressed IFNT-induced ISGs (OAS1 and ISG15) and STAT1 expressions in BEECs. To visualize the impact of PGN in an ex-vivo model that resembles the in vivo status, endometrial explants were treated by IFNT (1 ng/ml) with or without PGN (10 pg/ml) for 12 h. PGN suppressed IFNT-induced gene expressions of the above factors, but not for IFNA receptor type1 (IFNAR1) or type2 (IFNAR2) in explants. Immunofluorescence analysis illustrated that PGN completely suppressed the IFNT-triggered OAS1 protein expression in the luminal epithelium of explants. Of note, PGN did not stimulate pro-inflammatory cytokines (TNFA and IL1B) or TLR2 mRNA expression in both models. These findings indicate that the presence of low levels of PGN suppresses ISGs expression induced by IFNT secreted from early embryo, at the luminal epithelium of the bovine endometrium. This could severely interfere with early stage of MRP processes in cows, leading to pregnancy failure.


Subject(s)
Endometrium/metabolism , Interferon Type I/metabolism , Peptidoglycan/metabolism , Pregnancy Proteins/metabolism , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Abortion, Veterinary/immunology , Abortion, Veterinary/metabolism , Abortion, Veterinary/microbiology , Animals , Blastocyst/immunology , Blastocyst/metabolism , Blastocyst/microbiology , Cattle , Cattle Diseases/genetics , Cattle Diseases/metabolism , Cattle Diseases/microbiology , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Endometrium/immunology , Endometrium/microbiology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Gene Expression , In Vitro Techniques , Interferon Type I/pharmacology , Maternal-Fetal Exchange/immunology , Peptidoglycan/immunology , Pregnancy , Pregnancy Proteins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT1 Transcription Factor/genetics , Uterine Diseases/genetics , Uterine Diseases/metabolism , Uterine Diseases/veterinary , Uterus/immunology , Uterus/metabolism , Uterus/microbiology
9.
Theriogenology ; 150: 313-320, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32088048

ABSTRACT

The first 7 days post-insemination are critical for establishment of pregnancy. The pre-ovulatory luteinizing hormone (LH) surge induces ovulation through disruption of the follicle structure that elucidates pro-inflammatory (Th1) responses. Various types of immune cells are recruited into the corpus luteum (CL) to regulate luteal angiogenesis and progesterone (P4) secretion into the circulation to establish pregnancy. The active sperm-uterine crosstalk also induces Th1 responses, mainly via Toll-like receptor (TLR) 2/4 signaling pathway in vitro. The endometrial glands serve as sensors for sperm signals, which trigger Th1 responses. Conversely, the sperm-oviduct binding generates anti-inflammatory (Th2) responses to support sperm survival until fertilization. It is well-established that embryo-maternal crosstalk starts after the embryo hatches out from the zona pellucida (ZP). However most recently, it was shown that the 16-cell stage bovine embryo starts to secrete interferon-tau (IFNT) that induces Th2 immune responses in the oviduct. Once developing embryos descend into the uterine horn, they induce Th2 responses with interferon-stimulated genes (ISGs) expression in the uterine epithelium and local immune cells mainly via IFNT release. Likewise, multiple embryos in the uterus of superovulated donor cows on D7 post-insemination induce Th2 immune responses with ISGs expressions in circulating immune cells. These findings strongly suggest that the maternal immune system reacts to the embryo during the first 7 days post-insemination to induce fetal tolerance. It became evident that the innate immunity of the developing CL, oviduct, and uterus works together to provide optimal conditions for fertilization and early embryonic development during the first 7 days post-insemination.


Subject(s)
Cattle/physiology , Corpus Luteum/physiology , Fallopian Tubes/physiology , Uterus/physiology , Animals , Cattle/embryology , Cattle/immunology , Corpus Luteum/immunology , Embryo, Mammalian/immunology , Embryonic Development , Fallopian Tubes/immunology , Female , Immunity, Innate , Male , Pregnancy , Progesterone , Spermatozoa/physiology , Uterus/immunology
10.
Reproduction ; 159(2): 181-192, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31794421

ABSTRACT

We previously reported that sperm binding to cultured monolayers of bovine uterine epithelial cells induces an acute inflammatory response involving the Toll-like receptor (TLR2) signaling pathway. This response serves to clear the uterus of sperm and thereby prepares the endometrium for implantation. The endometrium is lined by surface epithelial cells; however, epithelial cells also line uterine glands. To investigate the source of the immune response, we used an explant model. Explants of bovine endometrium were incubated with bull sperm illuminated by JC1 fluorescent labeling in their mitochondria. The sperm glided over the surface epithelium until they encountered and entered uterine glands, where they remained. Scanning electron microscopy of explants revealed polymorphonuclear neutrophils (PMNs) in uterine glands along with sperm. In the absence of sperm, PMNs were not seen in glands. The incubation of sperm with explants resulted in an acute inflammatory response, seen as the upregulation of mRNA expression of IL8, TNFA, IL1B, PGES and TLR2 in whole explants, as well as increased TNFA protein expression in uterine glands. TLR1/2 antagonist reduced sperm numbers in the glands and inhibited the increase of TNFA. Our observations suggest that uterine glands serve as a site where sperm interact with the uterine epithelium to trigger the innate immune response to clear excess sperm from the uterus.

11.
Reprod Toxicol ; 74: 158-163, 2017 12.
Article in English | MEDLINE | ID: mdl-28966149

ABSTRACT

Dietary contamination by Zearalenone (ZEN) has a detrimental effect on bovine fertility. Recently, we showed a novel anti-inflammatory response of bovine oviductal epithelial cells (BOEC) to active sperm cells in vitro. The aim of the present study was to investigate the effect of ZEN exposure of BOEC on the immune-related cytokine expression in response to bovine sperm. At concentrations of 100 and 1000ng/mL, ZEN induced the expression of TNF and IL1B (pro-inflammatory cytokines) as well as IL8 (chemokine) in BOEC in a dose-dependent manner. Furthermore, ZEN induced PTGES expression and PGE2 secretion in BOEC. Sperm co-culture induced an anti-inflammatory response in BOEC with upregulation of TGFB, secretion of PGE2 and downregulation of TNF. Most importantly, ZEN at 1-1000ng/mL eliminated the response of BOEC to sperm. Estradiol-17ß (5ng/mL) treatment did not produce the same effects as ZEN, suggesting that the response of BOEC to ZEN is, at least in part, not mediated by estrogen receptors. Taken together, ZEN can produce inflammatory effects on BOEC by stimulating the expressions of pro-inflammatory cytokines and disrupt the normal interaction between sperm and BOEC at the level of cytokine expressions and PGE2 production. Thus, exposure of the bovine oviduct to ZEN may negatively affect sperm survival and reduce fertility.


Subject(s)
Endocrine Disruptors/toxicity , Epithelial Cells/drug effects , Inflammation/immunology , Spermatozoa/immunology , Zearalenone/toxicity , Animals , Cattle , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Cytokines/immunology , Dinoprostone/genetics , Dinoprostone/immunology , Epithelial Cells/immunology , Female , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Male , Oviducts/cytology , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/immunology
12.
Sci Rep ; 7(1): 4482, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667317

ABSTRACT

After intercourse/insemination, large numbers of sperm are deposited in the female reproductive tract (FRT), triggering a massive recruitment of neutrophils (PMNs) into the FRT, possibly to eliminate excessive sperm via phagocytosis. Some bovine oviductal fluid components (BOFCs) have been shown to regulate in vitro sperm phagocytosis (spermophagy) by PMNs. The modeling approach-based logistic regression (LR) and autoregressive logistic regression (ALR) can be used to predict the behavior of complex biological systems. We, first, compared the LR and ALR models using in vitro data to find which of them provides a better prediction of in vitro spermophagy in bovine. Then, the best model was used to identify and classify the reciprocal effects of BOFCs in regulating spermophagy. The ALR model was calibrated using an iterative procedure with a dynamical search direction. The superoxide production data were used to illustrate the accuracy in validating logit model-based ALR and LR. The ALR model was more accurate than the LR model. Based on in vitro data, the ALR predicted that the regulation of spermophagy by PMNs in bovine oviduct is more sensitive to alpha-1 acid glycoprotein (AGP), PGE2, bovine serum albumin (BSA), and to the combination of AGP or BSA with other BOFCs.


Subject(s)
Body Fluids/metabolism , Logistic Models , Neutrophils/physiology , Oviducts/metabolism , Phagocytosis , Spermatozoa/metabolism , Algorithms , Animals , Cattle , Female , Male , Reproducibility of Results
13.
J Reprod Dev ; 60(5): 342-8, 2014.
Article in English | MEDLINE | ID: mdl-24931131

ABSTRACT

We have previously shown that polymorphonuclear neutrophils (PMNs) are present in bovine oviduct fluid under physiological conditions, and that the oviduct provides a microenvironment that protects sperm from phagocytosis by PMNs. Alpha 1-acid glycoprotein (AGP) is a major acute-phase protein produced mainly in the liver that has immunomodulatory functions. AGP mRNA is expressed in extrahepatic organs, such as the lung, kidney, spleen, lymph node, uterus, and ovary. Therefore, in this study, we investigated, 1) the local production of AGP in the bovine oviduct, 2) the effect of AGP on the phagocytic activity of PMNs for sperm and superoxide production and 3) the impact of AGP desialylation on the PMN phagocytosis of sperm. The AGP gene was expressed in cultured bovine oviduct epithelial cells (BOECs) and AGP protein was detected in oviduct fluid. Preexposure of PMNs to AGP at physiological levels impaired PMN phagocytosis for sperm and superoxide generation. The desialylation of AGP eliminated these suppressive effects of AGP on PMN. Scanning electron microscopy revealed that AGP drastically reduced the formation of DNA-based neutrophil extracellular traps (NETs) for sperm entanglement. Additionally, AGP dose-dependently stimulated BOECs to produce prostaglandin E2 (PGE2) which has been shown to partially contribute to the regulation of sperm phagocytosis in the bovine oviduct. AGP and PGE2 at concentrations detected in the oviducts additively suppressed sperm phagocytosis by PMNs. These results provide evidence that locally produced AGP may be involved in protecting sperm from phagocytosis by PMNs in the bovine oviduct.


Subject(s)
Cattle , Fallopian Tubes/immunology , Neutrophils/immunology , Orosomucoid/physiology , Phagocytosis , Spermatozoa/immunology , Animals , Body Fluids/chemistry , Cell Survival , Cells, Cultured , Dinoprostone/biosynthesis , Epithelial Cells/metabolism , Extracellular Traps/drug effects , Fallopian Tubes/cytology , Fallopian Tubes/metabolism , Female , Gene Expression , Immunity/drug effects , Male , Microscopy, Electron, Scanning , N-Acetylneuraminic Acid , Neutrophils/drug effects , Neutrophils/ultrastructure , Orosomucoid/chemistry , Orosomucoid/genetics , Orosomucoid/pharmacology , Phagocytosis/drug effects , RNA, Messenger/analysis , Spermatozoa/physiology , Structure-Activity Relationship , Superoxides/metabolism
14.
Reproduction ; 147(2): 211-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24255155

ABSTRACT

This study aimed to investigate the presence of polymorphonuclear neutrophils (PMNs) in bovine oviduct fluid under physiological conditions and to determine the possible role of bovine oviduct epithelial cells (BOECs) in the regulation of the phagocytic activity of PMNs for sperm. During the pre-ovulatory stage, PMNs were identified in the bovine oviduct fluid in relatively constant numbers. In our experiments, PMNs were incubated for 4 h with the supernatant of cultured BOECs stimulated for 24 h by LH (10 ng/ml). Phagocytosis was then assayed by co-incubation of these PMNs with sperm treated to induce capacitation. The BOEC supernatant significantly suppressed sperm phagocytosis by PMNs, and the LH-stimulated BOEC supernatant further suppressed phagocytosis. Importantly, in the BOEC culture, LH stimulated the secretion of prostaglandin E2 (PGE2), which dose-dependently (10(-6), 10(-7), and 10(-8) M) suppressed sperm phagocytosis by PMNs. Furthermore, a PGEP2 receptor antagonist significantly abrogated the inhibition of phagocytosis by the LH-stimulated BOEC supernatant. Additionally, using scanning electron microscopy, incubation of PMNs with either PGE2 or LH-stimulated BOEC supernatant before phagocytosis was found to prevent the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results indicate that sperm are exposed to PMNs in the oviduct and PGE2 released into the oviduct fluid after LH stimulation may play a major role in the suppression of the phagocytic activity of PMNs for sperm via interaction with EP2 receptors. Thus, the bovine oviduct provides a PGE2-rich microenvironment to protect sperm from phagocytosis by PMNs, thereby supporting sperm survival in the oviduct. Free Japanese abstract A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/147/2/211/suppl/DC1.


Subject(s)
Cattle , Dinoprostone/physiology , Epithelial Cells/physiology , Fallopian Tubes/cytology , Neutrophils/physiology , Phagocytosis/physiology , Spermatozoa , Animals , Cells, Cultured , Culture Media, Conditioned/pharmacology , Dinoprostone/analysis , Fallopian Tubes/metabolism , Female , Luteinizing Hormone/pharmacology , Male , Phagocytosis/drug effects , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/physiology , Sperm Capacitation
SELECTION OF CITATIONS
SEARCH DETAIL
...