Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
medRxiv ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39252907

ABSTRACT

Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.

2.
Cancers (Basel) ; 16(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39199653

ABSTRACT

Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.

3.
Cancers (Basel) ; 16(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39199663

ABSTRACT

Lung cancer (LC) continues to be an important public health problem, being the most common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of research to identify genetic susceptibility genes by genome-wide association studies, only few loci associated to nicotine dependence have been consistently replicated. Our previously published study in few phenotypically discordant sib-pairs identified a combination of germline truncating mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental support to a model of a "private genetic epidemiology". Here, we used a combination of whole-exome and RNA sequencing coupled with a discordant sib's model in a novel cohort of pairs of never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role of the identified variants showing: (i) downregulation in LC tissue (indicating a "second hit" in tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation in both normal and cancer tissue (indicating transcript instability). The combination of the two techniques demonstrates that each patient has an average of six (with a range from four to eight) private mutations with a functional effect in tumor-predisposing genes. The presence of a unique combination of disrupting events in the affected subjects may explain the absence of the familial clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has his/her own "predisposing signature" to cancer development and suggest the use of personalized therapeutic strategies in lung cancer.

4.
Hum Mol Genet ; 33(14): 1229-1240, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38652285

ABSTRACT

Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.


Subject(s)
Autism Spectrum Disorder , Genetic Predisposition to Disease , Intellectual Disability , Humans , Autism Spectrum Disorder/genetics , HEK293 Cells , Intellectual Disability/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Exome Sequencing/methods , Signal Transduction/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Female , Mutation, Missense/genetics , Cyclic AMP/metabolism , Molecular Sequence Annotation
5.
Am J Med Genet B Neuropsychiatr Genet ; 195(6): e32970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38459409

ABSTRACT

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.


Subject(s)
Forkhead Transcription Factors , Intellectual Disability , Nerve Tissue Proteins , Phenotype , Rett Syndrome , Humans , Forkhead Transcription Factors/genetics , Rett Syndrome/genetics , Nerve Tissue Proteins/genetics , Female , Male , Child , Child, Preschool , Intellectual Disability/genetics , Language Development , Genetic Association Studies/methods , Mutation, Missense/genetics , Developmental Disabilities/genetics , Infant , Adolescent , High-Throughput Nucleotide Sequencing/methods , Haploinsufficiency/genetics
9.
J Glob Health ; 13: 04081, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37497751

ABSTRACT

Background: The COVID-19 pandemic had a major impact on the mental health and well-being of children with neurodevelopmental conditions (NDCs) and of their families worldwide. However, there is insufficient evidence to understand how different factors (e.g., individual, family, country, children) have impacted on anxiety levels of families and their children with NDCs developed over time. Methods: We used data from a global survey assessing the experience of 8043 families and their children with NDCs (mean of age (m) = 13.18 years, 37% female) and their typically developing siblings (m = 12.9 years, 45% female) in combination with data from the European Centre for Disease Prevention and Control, the University of Oxford, and the Central Intelligence Agency (CIA) World Factbook, to create a multilevel data set. Using stepwise multilevel modelling, we generated child-, family- and country-related factors that may have contributed to the anxiety levels of children with NDCs, their siblings if they had any, and their parents. All data were reported by parents. Results: Our results suggest that parental anxiety was best explained by family-related factors such as concerns about COVID-19 and illness. Children's anxiety was best explained by child-related factors such as children's concerns about loss of routine, family conflict, and safety in general, as well as concerns about COVID-19. In addition, anxiety levels were linked to the presence of pre-existing anxiety conditions for both children with NDCs and their parents. Conclusions: The present study shows that across the globe there was a raise in anxiety levels for both parents and their children with NDCs because of COVID-19 and that country-level factors had little or no impact on explaining differences in this increase, once family and child factors were considered. Our findings also highlight that certain groups of children with NDCs were at higher risk for anxiety than others and had specific concerns. Together, these results show that anxiety of families and their children with NDCs during the COVID-19 pandemic were predicted by very specific concerns and worries which inform the development of future toolkits and policy. Future studies should investigate how country factors can play a protective role during future crises.


Subject(s)
COVID-19 , Pandemics , Humans , Female , Adolescent , Male , Family/psychology , Parents/psychology , Anxiety/epidemiology
10.
Epileptic Disord ; 25(3): 371-382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37186408

ABSTRACT

BACKGROUND: Loss of function mutations in PCDH19 gene causes an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have a normal phenotype. No cure is presently available for this disease. METHODS: Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSCs). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) hiPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS: We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS: Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed elevated excitability, representing the situation in PCDH19-CE brain. We suggest Ngn2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Male , Humans , Female , Cadherins/genetics , Protocadherins , Epilepsy/genetics , Mutation , Cluster Analysis
11.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37048050

ABSTRACT

Although adult stem cells may be useful for studying tissue-specific diseases, they cannot be used as a general model for investigating human illnesses given their limited differentiation potential. Multilineage-differentiating stress-enduring (Muse) stem cells, a SSEA3(+) cell population isolated from mesenchymal stromal cells, fat, and skin fibroblasts, may be able to overcome that restriction. The Muse cells present in fibroblast cultures obtained from biopsies of patients' skin may be differentiated into cells of interest for analyzing diseases. We isolated Muse stem cells from patients with an intellectual disability (ID) and mutations in the IQSEC2 gene (i.e., BRAG1 gene) and induced in vitro neuroglial differentiation to study cell commitment and the differentiation of neural lineages. The neuroglial differentiation of Muse cells revealed that IQSEC2 mutations may alter the self-renewal and lineage specification of stem cells. We observed a decrease in the percentage of SOX2 (+) neural stem cells and neural progenitors (i.e., SOX2+ and NESTIN+) in cultures obtained from Muse cells with the mutated IQSEC2 gene. The alteration in the number of stem cells and progenitors produced a bias toward the astrocytes' differentiation. Our research demonstrates that Muse stem cells may represent a new cell-based disease model.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Neuroglia , Humans , Fibroblasts , Guanine Nucleotide Exchange Factors
14.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(1): 11-19, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420538

ABSTRACT

Objective: Bipolar disorder is a heritable chronic mental disorder that causes psychosocial impairment through depressive/manic episodes. Familial transmission of bipolar disorder does not follow simple Mendelian patterns of inheritance. The aim of this study was to describe a large family with 12 members affected by bipolar disorder. Whole-exome sequencing was performed for eight members, three of whom were diagnosed with bipolar disorder, and another reported as "borderline." Methods: Whole-exome sequencing data allowed us to select variants that the affected members had in common, including and excluding the "borderline" individual with moderate anxiety and obsessive-compulsive traits. Results: The results favored designating certain genes as predispositional to bipolar disorder: a heterozygous missense variant in CLN6 resulted in a "borderline" phenotype that, if combined with a heterozygous missense variant in ZNF92, is responsible for the more severe bipolar disorder phenotype. Both rare missense changes are predicted to disrupt protein function. Conclusions: Loss of both alleles in CLN6 causes neuronal ceroid lipofuscinosis, a severe progressive childhood neurological disorder. Our results indicate that heterozygous CLN6 carriers, previously reported as healthy, may be susceptible to bipolar disorder later in life if associated with additional variants in ZNF92.

15.
Braz J Psychiatry ; 45(1): 11-19, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-35881528

ABSTRACT

OBJECTIVE: Bipolar disorder is a heritable chronic mental disorder that causes psychosocial impairment through depressive/manic episodes. Familial transmission of bipolar disorder does not follow simple Mendelian patterns of inheritance. The aim of this study was to describe a large family with 12 members affected by bipolar disorder. Whole-exome sequencing was performed for eight members, three of whom were diagnosed with bipolar disorder, and another reported as "borderline." METHODS: Whole-exome sequencing data allowed us to select variants that the affected members had in common, including and excluding the "borderline" individual with moderate anxiety and obsessive-compulsive traits. RESULTS: The results favored designating certain genes as predispositional to bipolar disorder: a heterozygous missense variant in CLN6 resulted in a "borderline" phenotype that, if combined with a heterozygous missense variant in ZNF92, is responsible for the more severe bipolar disorder phenotype. Both rare missense changes are predicted to disrupt protein function. CONCLUSIONS: Loss of both alleles in CLN6 causes neuronal ceroid lipofuscinosis, a severe progressive childhood neurological disorder. Our results indicate that heterozygous CLN6 carriers, previously reported as healthy, may be susceptible to bipolar disorder later in life if associated with additional variants in ZNF92.


Subject(s)
Bipolar Disorder , Neuronal Ceroid-Lipofuscinoses , Humans , Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics
16.
PLoS Genet ; 18(11): e1010367, 2022 11.
Article in English | MEDLINE | ID: mdl-36327219

ABSTRACT

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Subject(s)
COVID-19 , Exome , Humans , Exome/genetics , Genome-Wide Association Study , COVID-19/genetics , Genetic Predisposition to Disease , Toll-Like Receptor 7/genetics , SARS-CoV-2/genetics
17.
Eur J Hum Genet ; 30(12): 1432-1438, 2022 12.
Article in English | MEDLINE | ID: mdl-36198805

ABSTRACT

Genetics has begun to be considered a key medical discipline which can have an impact on everyday clinical practice. Therefore, it is necessary to understand what the most effective way is of caring for people affected by or at risk of genetic disorders. In this context, the team dealing with such patients has evolved with the emergence of the Genetic Counsellor figure. The profession of Genetic Counsellor appeared in Europe in 1980, but it is still a much-debated profession and not yet recognized in all European countries. The aim of this research is to investigate both how a team should be composed in the care of patients affected by or at risk of genetic disorders and what the role of the Genetic Counsellor should be-the field of action and the competences. The research has been carried out at the European level, submitting an online questionnaire to geneticists who, having the ultimate responsibility for the diagnosis and being in the field for the longest time, expressing their opinion, can identify strengths and potential areas for improvement in genetic care. 200 responses were collected from all over Europe. This led to awareness of the importance of the role of the counsellor within the medical genetics multidisciplinary team, and, above all, what the counsellor's skills and qualifications should be-for geneticists. Although this new profession has difficulties in being recognized in some countries, it seems clear that these highly competent professionals are essential for in-patient care and in the multidisciplinary team.


Subject(s)
Counselors , Physicians , Humans , Europe , Patient Care Team , Perception
18.
Genet Med ; 24(8): 1753-1760, 2022 08.
Article in English | MEDLINE | ID: mdl-35579625

ABSTRACT

PURPOSE: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes. METHODS: Clinical data was collected through an extensive web-based survey. RESULTS: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%). CONCLUSION: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Abnormalities, Multiple , Chromosomal Proteins, Non-Histone/genetics , Face/abnormalities , Genetic Association Studies , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Micrognathism/genetics , Neck/abnormalities , Phenotype
19.
Clin Genet ; 102(2): 117-122, 2022 08.
Article in English | MEDLINE | ID: mdl-35470444

ABSTRACT

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Subject(s)
De Lange Syndrome , Nuclear Proteins , Cell Cycle Proteins/genetics , Child , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Female , Genomics , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Pregnancy , Transcription Factors/genetics
20.
Hum Mol Genet ; 31(17): 2934-2950, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35405010

ABSTRACT

DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.


Subject(s)
Epilepsy , Intellectual Disability , MicroRNAs , Microcephaly , Nervous System Malformations , Humans , Intellectual Disability/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Microcephaly/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL