Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 15(6)2023 06 11.
Article in English | MEDLINE | ID: mdl-37376651

ABSTRACT

This paper presents a novel numerical technique for the identification of effective and basic reproduction numbers, Re and R0, for long-term epidemics, using an inverse problem approach. The method is based on the direct integration of the SIR (Susceptible-Infectious-Removed) system of ordinary differential equations and the least-squares method. Simulations were conducted using official COVID-19 data for the United States and Canada, and for the states of Georgia, Texas, and Louisiana, for a period of two years and ten months. The results demonstrate the applicability of the method in simulating the dynamics of the epidemic and reveal an interesting relationship between the number of currently infectious individuals and the effective reproduction number, which is a useful tool for predicting the epidemic dynamics. For all conducted experiments, the results show that the local maximum (and minimum) values of the time-dependent effective reproduction number occur approximately three weeks before the local maximum (and minimum) values of the number of currently infectious individuals. This work provides a novel and efficient approach for the identification of time-dependent epidemics parameters.


Subject(s)
COVID-19 , Communicable Diseases , Epidemics , Humans , COVID-19/epidemiology , Basic Reproduction Number , Communicable Diseases/epidemiology , Disease Susceptibility/epidemiology
2.
Sci Rep ; 12(1): 15688, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127380

ABSTRACT

An Adaptive Susceptible-Infected-Removed-Vaccinated (A-SIRV) epidemic model with time-dependent transmission and removal rates is constructed for investigating the dynamics of an epidemic disease such as the COVID-19 pandemic. Real data of COVID-19 spread is used for the simultaneous identification of the unknown time-dependent rates and functions participating in the A-SIRV system. The inverse problem is formulated and solved numerically using the Method of Variational Imbedding, which reduces the inverse problem to a problem for minimizing a properly constructed functional for obtaining the sought values. To illustrate and validate the proposed solution approach, the present study used available public data for several countries with diverse population and vaccination dynamics-the World, Israel, The United States of America, and Japan.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Disease Susceptibility/epidemiology , Epidemiological Models , Humans , Models, Biological , Pandemics/prevention & control , Vaccination/methods
3.
Infect Dis Model ; 7(1): 134-148, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34934870

ABSTRACT

This work presents a method for solving an Adaptive Susceptible-Infected-Removed (A-SIR) epidemic model with time-dependent transmission and removal rates. Available COVID-19 data as of March 2021 are used for identifying the rates from an inverse problem. The estimated rates are used to solve the adaptive SIR system for the spread of the infectious disease. This method simultaneously solves the problem for the time-dependent rates and the unknown functions of the A-SIR system. Presented results show the spread of COVID-19 in the World, Argentina, Brazil, Colombia, Dominican Republic, and Honduras. Comparisons of the reported affected by the disease individuals from the available real data and the values obtained with the A-SIR model demonstrate how well the model simulates the dynamic of the infectious disease.

SELECTION OF CITATIONS
SEARCH DETAIL