Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 193: 53-66, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838815

ABSTRACT

The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Autophagy , Cardiomyopathies , Myocytes, Cardiac , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/deficiency , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Myocardium/metabolism , Myocardium/pathology , Chloroquine/pharmacology , Mice, Knockout
2.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37042252

ABSTRACT

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Subject(s)
Heart Failure , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Ventricular Remodeling , beta Catenin , Catenins , Monocrotaline/toxicity , Signal Transduction , Disease Models, Animal , Ventricular Function, Right
3.
Circ Res ; 131(7): 580-597, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36000401

ABSTRACT

BACKGROUND: ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS: Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS: Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS: Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.


Subject(s)
Adenosine Deaminase , Heart Failure , Adenosine/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Inosine/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferons/metabolism , Mice , Mice, Mutant Strains , NF-kappa B/metabolism , RNA
5.
J Muscle Res Cell Motil ; 42(2): 381-397, 2021 06.
Article in English | MEDLINE | ID: mdl-33710525

ABSTRACT

Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.


Subject(s)
Cardiomyopathy, Hypertrophic , Filamins , Myopathies, Structural, Congenital , Adaptor Proteins, Signal Transducing , Adult , Apoptosis Regulatory Proteins , Cardiomyopathy, Hypertrophic/genetics , Filamins/genetics , Humans , Male , Mutation , Myocytes, Cardiac , Young Adult
6.
Cardiovasc Res ; 117(3): 712-726, 2021 02 22.
Article in English | MEDLINE | ID: mdl-32514522

ABSTRACT

Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.


Subject(s)
Cell Differentiation , Cell Proliferation , Energy Metabolism , Heart Diseases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Myocytes, Cardiac/metabolism , Animals , Cellular Reprogramming , Gene Expression Regulation, Developmental , Heart Diseases/genetics , Heart Diseases/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Phenotype , Signal Transduction
8.
Cell Rep ; 17(9): 2354-2366, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27880909

ABSTRACT

Sox6 belongs to the Sox gene family and plays a pivotal role in fiber type differentiation, suppressing transcription of slow-fiber-specific genes during fetal development. Here, we show that Sox6 plays opposite roles in MyHC-I regulation, acting as a positive and negative regulator of MyHC-I expression during embryonic and fetal myogenesis, respectively. During embryonic myogenesis, Sox6 positively regulates MyHC-I via transcriptional activation of Mef2C, whereas during fetal myogenesis, Sox6 requires and cooperates with the transcription factor Nfix in repressing MyHC-I expression. Mechanistically, Nfix is necessary for Sox6 binding to the MyHC-I promoter and thus for Sox6 repressive function, revealing a key role for Nfix in driving Sox6 activity. This feature is evolutionarily conserved, since the orthologs Nfixa and Sox6 contribute to repression of the slow-twitch phenotype in zebrafish embryos. These data demonstrate functional cooperation between Sox6 and Nfix in regulating MyHC-I expression during prenatal muscle development.


Subject(s)
Fetus/embryology , Muscle, Skeletal/embryology , Myosin Heavy Chains/metabolism , NFI Transcription Factors/metabolism , SOXD Transcription Factors/genetics , Transcription, Genetic , Zebrafish Proteins/metabolism , Animals , Conserved Sequence , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Fetus/metabolism , Gene Expression Regulation, Developmental , MEF2 Transcription Factors/metabolism , Mice , Models, Biological , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Phenotype , Promoter Regions, Genetic , Protein Binding/genetics , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL