Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Microbiol ; 7(6): 780-795, 2022 06.
Article in English | MEDLINE | ID: mdl-35577971

ABSTRACT

While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Colon/metabolism , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Microbiota/genetics
3.
Nat Rev Gastroenterol Hepatol ; 19(1): 7-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34453142

ABSTRACT

Variability in disease presentation, progression and treatment response has been a central challenge in medicine. Although variability in host factors and genetics are important, it has become evident that the gut microbiome, with its vast genetic and metabolic diversity, must be considered in moving towards individualized treatment. In this Review, we discuss six broad disease groups: infectious disease, cancer, metabolic disease, cardiovascular disease, autoimmune or inflammatory disease, and allergic and atopic diseases. We highlight current knowledge on the gut microbiome in disease pathogenesis and prognosis, efficacy, and treatment-related adverse events and its promise for stratifying existing treatments and as a source of novel therapies. The Review is not meant to be comprehensive for each disease state but rather highlights the potential implications of the microbiome as a tool to individualize treatment strategies in clinical practice. Although early, the outlook is optimistic but challenges need to be overcome before clinical implementation, including improved understanding of underlying mechanisms, longitudinal studies with multiple data layers reflecting gut microbiome and host response, standardized approaches to testing and reporting, and validation in larger cohorts. Given progress in the microbiome field with concurrent basic and clinical studies, the microbiome will likely become an integral part of clinical care within the next decade.


Subject(s)
Gastrointestinal Diseases/therapy , Gastrointestinal Microbiome , Liver Diseases/therapy , Precision Medicine , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/etiology , Humans , Liver Diseases/diagnosis , Liver Diseases/etiology
4.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279218

ABSTRACT

Ecological processes underlying bacterial coexistence in the gut are not well understood. Here, we disentangled the effect of the host and the diet on the coexistence of four closely related Lactobacillus species colonizing the honey bee gut. We serially passaged the four species through gnotobiotic bees and in liquid cultures in the presence of either pollen (bee diet) or simple sugars. Although the four species engaged in negative interactions, they were able to stably coexist, both in vivo and in vitro. However, coexistence was only possible in the presence of pollen, and not in simple sugars, independent of the environment. Using metatranscriptomics and metabolomics, we found that the four species utilize different pollen-derived carbohydrate substrates indicating resource partitioning as the basis of coexistence. Our results show that despite longstanding host association, gut bacterial interactions can be recapitulated in vitro providing insights about bacterial coexistence when combined with in vivo experiments.


Microbes colonize nearly every environment on Earth, from the ocean and soil to the inner and outer surfaces of animals, such as the gut or skin. They form communities that are usually made up of a diverse range of bacteria, often containing closely related species ­ a key factor for a successful community. But closely related bacteria can battle for the same resources, so it is unclear how they manage to live alongside each other without competing against one another. While diet is thought to play a key role in enabling closely related bacterial species to co-exist in the gut of an animal, experimental evidence is lacking, due to the difficulty in replicating these systems in the laboratory. One strategy for investigating microbial communities is using honeybees. A major dietary source for honeybees is pollen, which can also be applied in the laboratory to grow diverse types of bacteria found in the honeybee gut. In addition, scientists can generate bees that lack microbial communities in the gut, allowing them to add specific types of bacteria to study their impact. Brochet et al. used this approach with Western honeybees to assess whether diet enables closely related bacteria to live alongside one another in the gut. First, they colonized bees that lacked gut microbes with four closely related bacteria of the genus Lactobacillus, alone or together, and fed the bees either sugar water or sugar water and pollen. After five days, the gut bacteria were analysed. This revealed that bees fed on sugar water only had one dominant Lactobacillus species present in their gut, while bees fed with additional pollen harboured all four Lactobacillus species. Further analysis of these four bacterial species revealed that each of them activates distinct genes when grown on pollen, allowing the different species to consume specific nutrients from broken down pollen. These findings show that closely related bacteria can coexist in the gut by sharing the different nutrients provided in the diet of the host. Consequently, differences in dietary intake in honeybees and other animals may affect the diversity of gut bacteria, and potentially the health of an animal.


Subject(s)
Bees/microbiology , Gastrointestinal Microbiome/physiology , Animals , Bacteria , Communicable Diseases , Diet , Ecology , Flavonoids , Lactobacillus/metabolism , Metabolomics , Plant Extracts , Pollen/chemistry , Sugars/metabolism , Symbiosis , Transcriptome
5.
Gastroenterology ; 161(4): 1194-1207.e8, 2021 10.
Article in English | MEDLINE | ID: mdl-34245762

ABSTRACT

BACKGROUND & AIMS: The gut virome includes eukaryotic viruses and bacteriophages that can shape the gut bacterial community and elicit host responses. The virome can be implicated in diseases, such as irritable bowel syndrome (IBS), where gut bacteria play an important role in pathogenesis. We provide a comprehensive and longitudinal characterization of the virome, including DNA and RNA viruses and paired multi-omics data in a cohort of healthy subjects and patients with IBS. METHODS: We selected 2 consecutive stool samples per subject from a longitudinal study cohort and performed metagenomic sequencing on DNA and RNA viruses after enriching for viral-like particles. Viral sequence abundance was evaluated over time, as well as in the context of diet, bacterial composition and function, metabolite levels, colonic gene expression, host genetics, and IBS subsets. RESULTS: We found that the gut virome was temporally stable and correlated with the colonic transcriptome. We identified IBS-subset-specific changes in phage populations; Microviridae, Myoviridae, and Podoviridae species were elevated in diarrhea-predominant IBS, and other Microviridae and Myoviridae species were elevated in constipation-predominant IBS compared to healthy controls. We identified correlations between subsets of the virome and bacterial composition (unclassifiable "dark matter" and phages) and diet (eukaryotic viruses). CONCLUSIONS: We found that the gut virome is stable over time but varies among subsets of patients with IBS. It can be affected by diet and potentially influences host function via interactions with gut bacteria and/or altering host gene expression.


Subject(s)
Diet , Intestines/virology , Irritable Bowel Syndrome/virology , Transcriptome , Virome , Viruses/growth & development , Adult , Bacteriophages/genetics , Bacteriophages/growth & development , Case-Control Studies , Diet/adverse effects , Female , Gastrointestinal Microbiome , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Intestines/microbiology , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metagenome , Metagenomics , Middle Aged , Virology , Viruses/genetics
6.
Nat Microbiol ; 6(2): 196-208, 2021 02.
Article in English | MEDLINE | ID: mdl-33398099

ABSTRACT

Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in-and even dominate-the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.


Subject(s)
Bacteria/metabolism , Kefir/microbiology , Microbial Interactions , Microbiota/physiology , Saccharomycetales/metabolism , Acetic Acid/metabolism , Bacteria/classification , Bacteria/genetics , Fermentation , Lactic Acid/metabolism , Metabolomics , Microbiota/genetics , Phylogeny , Saccharomycetales/classification , Saccharomycetales/genetics
7.
Gastroenterology ; 160(2): 538-555, 2021 01.
Article in English | MEDLINE | ID: mdl-33253687

ABSTRACT

There have been numerous human studies reporting associations between the intestinal microbiome and functional gastrointestinal disorders (FGIDs), and independently animal studies have explored microbiome-driven mechanisms underlying FGIDs. However, there is often a disconnect between human and animal studies, which hampers translation of microbiome findings to the clinic. Changes in the microbiota composition of patients with FGIDs are generally subtle, whereas changes in microbial function, reflected in the fecal metabolome, appear to be more precise indicators of disease subtype-specific mechanisms. Although we have made significant progress in characterizing the microbiome, to effectively translate microbiome science in a timely manner, we need concurrent and iterative longitudinal studies in humans and animals to determine the precise microbial functions that can be targeted to address specific pathophysiological processes in FGIDs. A systems approach integrating multiple data layers rather than evaluating individual data layers of symptoms, physiological changes, or -omics data in isolation will allow for validation of mechanistic insights from animal studies while also allowing new discovery. Patient stratification for clinical trials based on functional microbiome alterations and/or pathophysiological measurements may allow for more accurate determination of efficacy of individual microbiome-targeted interventions designed to correct an underlying abnormality. In this review, we outline current approaches and knowledge, and identify gaps, to provide a potential roadmap for accelerating translation of microbiome science toward microbiome-targeted personalized treatments for FGIDs.


Subject(s)
Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy , Gastrointestinal Microbiome/physiology , Animals , Diet , Disease Models, Animal , Gastrointestinal Diseases/physiopathology , Humans , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/physiopathology , Irritable Bowel Syndrome/therapy
8.
iScience ; 23(12): 101798, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33299969

ABSTRACT

Recent studies emphasize the role of microbial metabolites in regulating gastrointestinal (GI) physiology through activation of host receptors, highlighting the potential for inter-kingdom signaling in treating GI disorders. In this study, we show that tryptamine, a tryptophan-derived bacterial metabolite, stimulates mucus release from goblet cells via activation of G-protein-coupled receptor (GPCR) 5-HT4R. Germ-free mice colonized with engineered Bacteroides thetaiotaomicron optimized to produce tryptamine (Trp D+) exhibit decreased weight loss and increased mucus release following dextran sodium sulfate treatment when compared with mice colonized with control B. thetaiotaomicron (Trp D-). Additional beneficial effects in preventing barrier disruption and lower disease activity index were seen only in female mice, highlighting sex-specific effects of the bacterial metabolite. This study demonstrates potential for the precise modulation of mucus release by microbially produced 5-HT4 GPCR agonist as a therapeutic strategy to treat inflammatory conditions of the GI tract.

10.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916129

ABSTRACT

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/genetics , Gene Expression Regulation/genetics , Irritable Bowel Syndrome/metabolism , Metabolome , Purines/metabolism , Transcriptome/genetics , Animals , Bile Acids and Salts/metabolism , Biopsy , Butyrates/metabolism , Chromatography, Liquid , Cross-Sectional Studies , Epigenomics , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/physiology , Host Microbial Interactions/genetics , Humans , Hypoxanthine/metabolism , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metabolome/physiology , Mice , Observational Studies as Topic , Prospective Studies , Software , Tandem Mass Spectrometry , Transcriptome/physiology
11.
J Proteome Res ; 19(8): 2997-3010, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32529827

ABSTRACT

The opportunistic pathogen Staphylococcus aureus has become a major threat for human health and well-being by developing resistance to antibiotics and by fast evolution into new lineages that rapidly spread within the healthy human population. This calls for development of active or passive immunization strategies to prevent or treat acute phase infections. Since no such anti-staphylococcal immunization approaches are available for clinical implementation, the present studies were aimed at identifying new leads for their development. For this purpose, we profiled the cell-surface-exposed staphylococcal proteome under infection-mimicking conditions by combining two approaches for "bacterial shaving" with immobilized or soluble trypsin and subsequent mass spectrometry analysis of liberated peptides. In parallel, non-covalently cell-wall-bound proteins extracted with potassium thiocyanate and the exoproteome fraction were analyzed by gel-free proteomics. All data are available through ProteomeXchange accession PXD000156. To pinpoint immunodominant bacterial-surface-exposed epitopes, we screened selected cell-wall-attached proteins of S. aureus for binding of immunoglobulin G from patients who have been challenged by different types of S. aureus due to chronic wound colonization. The combined results of these analyses highlight particular cell-surface-exposed S. aureus proteins with highly immunogenic exposed epitopes as potential targets for development of protective anti-staphylococcal immunization strategies.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Bacterial Proteins , Cell Membrane , Humans , Immunodominant Epitopes , Proteome , Staphylococcal Infections/prevention & control
12.
Environ Res ; 186: 109485, 2020 07.
Article in English | MEDLINE | ID: mdl-32289569

ABSTRACT

BACKGROUND: Poor air quality is increasingly associated with several gastrointestinal diseases suggesting a possible association between air quality and the human gut microbiome. However, details on this remain largely unexplored as current available research is scarce. The aim of this comprehensive rigorous review was to summarize the existing reports on the impact of indoor or outdoor airborne pollutants on the animal and human gut microbiome and to outline the challenges and suggestions to expand this field of research. METHODS AND RESULTS: A comprehensive search of several databases (inception to August 9, 2019, humans and animals, English language only) was designed and conducted by an experienced librarian to identify studies describing the impact of air pollution on the human gut microbiome. The retrieved articles were assessed independently by two reviewers. This process yielded six original research papers on the animal GI gastrointestinal microbiome and four on the human gut microbiome. ß-diversity analyses from selected animal studies demonstrated a significantly different composition of the gut microbiota between control and exposed groups but changes in α-diversity were less uniform. No consistent findings in α or ß-diversity were reported among the human studies. Changes in microbiota at the phylum level disclosed substantial discrepancies across animal and human studies. CONCLUSIONS: A different composition of the gut microbiome, particularly in animal models, is associated with exposure to air pollution. Air pollution is associated with various taxa changes, which however do not follow a clear pattern. Future research using standardized methods are critical to replicate these initial findings and advance this emerging field.


Subject(s)
Air Pollution , Gastrointestinal Diseases , Gastrointestinal Microbiome , Microbiota , Air Pollution/adverse effects , Animals , Humans
13.
PLoS Biol ; 15(12): e2003467, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29232373

ABSTRACT

It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.


Subject(s)
Bacteria/metabolism , Bees/metabolism , Bees/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/isolation & purification , Fermentation , Flavonoids/metabolism , Food Chain , Gastrointestinal Microbiome/physiology , Metabolomics , Nucleosides/metabolism , Pollen/metabolism
14.
Microbiol Mol Biol Rev ; 80(4): 1029-1057, 2016 12.
Article in English | MEDLINE | ID: mdl-27784798

ABSTRACT

Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis.


Subject(s)
Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial/genetics , RNA, Bacterial/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Bacillus subtilis/metabolism , RNA, Antisense/genetics , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Riboswitch/genetics
15.
Biochim Biophys Acta ; 1853(10 Pt A): 2553-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26115952

ABSTRACT

One of the best-characterized general stress responses in bacteria is the σB-mediated stress response of the Gram-positive soil bacterium Bacillus subtilis. The σB regulon contains approximately 200 protein-encoding genes and 136 putative regulatory RNAs. One of these σB-dependent RNAs, named S1136-S1134, was recently mapped as being transcribed from the S1136 promoter on the opposite strand of the essential rpsD gene, which encodes the ribosomal primary-binding protein S4. Accordingly, S1136-S1134 transcription results in an rpsD-overlapping antisense RNA (asRNA). Upon exposure of B. subtilis to ethanol, the S1136 promoter was found to be induced, while rpsD transcription was downregulated. By quantitative PCR, we show that the activation of transcription from the S1136 promoter is directly responsible for the downregulation of rpsD upon ethanol exposure. We also show that this downregulation of rpsD leads to a reduced level of the small (30S) ribosomal subunit upon ethanol stress. The activation of the S1136 promoter thus represents the first example of antisense transcription-mediated regulation in the general stress response of B. subtilis and implicates the reduction of ribosomal protein abundance as a new aspect in the σB-dependent stress response. We propose that the observed reduction in the level of the small ribosomal subunit, which contains the ribosome-decoding center, may protect B. subtilis cells against misreading and spurious translation of possibly toxic aberrant peptides under conditions of ethanol stress.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/biosynthesis , Ethanol/pharmacology , Gene Expression Regulation, Bacterial/drug effects , RNA, Antisense/biosynthesis , RNA, Bacterial/biosynthesis , Ribosome Subunits, Small, Bacterial/metabolism , Sigma Factor/biosynthesis , Stress, Physiological/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , RNA, Antisense/genetics , RNA, Bacterial/genetics , Ribosome Subunits, Small, Bacterial/genetics , Sigma Factor/genetics
16.
PLoS Genet ; 11(3): e1005046, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25790031

ABSTRACT

Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Genetic Heterogeneity , RNA/genetics , Transcription Factors/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription Factors/metabolism
17.
Nucleic Acids Res ; 42(18): 11393-407, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25217586

ABSTRACT

Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Ribosomes/physiology , Transcription Termination, Genetic , ATP-Binding Cassette Transporters/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Codon , DNA-Binding Proteins/metabolism , Operon , Promoter Regions, Genetic , Repressor Proteins/metabolism , Ribosomes/drug effects , Terminator Regions, Genetic , Transcription Factors/metabolism , Transcriptional Activation
18.
Antioxid Redox Signal ; 18(10): 1159-64, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-22540663

ABSTRACT

The oxidative folding of proteins involves disulfide bond formation, which is usually catalyzed by thiol-disulfide oxidoreductases (TDORs). In bacteria, this process takes place in the cytoplasmic membrane and other extracytoplasmic compartments. While it is relatively easy to study oxidative folding of water-soluble proteins on a proteome-wide scale, this has remained a major challenge for membrane proteins due to their high hydrophobicity. Here, we have assessed whether proteomic techniques can be applied to probe the oxidative folding of membrane proteins using the Gram-positive bacterium Bacillus subtilis as a model organism. Specifically, we investigated the membrane proteome of a B. subtilis bdbCD mutant strain, which lacks the primary TDOR pair BdbC and BdbD, by gel-free mass spectrometry. In total, 18 membrane-associated proteins showed differing behavior in the bdbCD mutant and the parental strain. These included the ProA protein involved in osmoprotection. Consistent with the absence of ProA, the bdbCD mutant was found to be sensitive to osmotic shock. We hypothesize that membrane proteomics is a potentially effective approach to profile oxidative folding of bacterial membrane proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Proteomics/methods , Bacillus subtilis/metabolism , Electrophoresis, Polyacrylamide Gel , Protein Folding
19.
Science ; 335(6072): 1103-6, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22383849

ABSTRACT

Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.


Subject(s)
Bacillus subtilis/genetics , Bacillus subtilis/physiology , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Transcription, Genetic , Transcriptome , Adaptation, Physiological , Algorithms , Binding Sites , Gene Expression Profiling , Gene Regulatory Networks , Oligonucleotide Array Sequence Analysis , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulon , Sigma Factor/metabolism , Terminator Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...