Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
Kans J Med ; 17: 51-56, 2024.
Article in English | MEDLINE | ID: mdl-38859992

ABSTRACT

Introduction: The topic of childhood vaccinations has become increasingly contentious, sparking debate, and creating challenging decisions for parents. This study aimed to explore the factors influencing COVID-19 vaccination decisions for parents of unvaccinated children and identify the most common reasons for not vaccinating children against COVID-19 in the U.S. Methods: Authors analyzed data from Phase 3.7, Week 53 of the United States Census Bureau's Household Pulse Survey (N = 68,504), collected from January 4 to January 16, 2023. Standard descriptive statistics and adjusted odds ratio (aOR) were used to analyze the data. Results: The top three reasons for vaccine hesitancy were concerns about side effects, lack of trust in the vaccine, and the perception that children in the household were not part of a high-risk group. Among respondents, nearly 87% (n = 59,363) reported receiving a COVID- 19 vaccination, and these individuals were more inclined to vaccinate their children across all age groups studied. Additionally, participants with higher levels of education (bachelor's degree or higher) were more likely to vaccinate their children against COVID-19 (aOR = 5.79; 95% CI, 5.43-6.17; p <0.001). Conclusions: Findings from the study suggest that some parents are still concerned about the COVID-19 vaccine and are hesitant to vaccinate their children against the disease. Information and insights from this study allow for a greater understanding of how parents are making this decision nearly three years after the pandemic officially began. Further studies are needed to determine how other factors, such as geographical location, also may affect parental COVID-19 vaccination hesitancy.

2.
J Diabetes Metab Disord ; 23(1): 1293-1304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932812

ABSTRACT

Aim: This retrospective study aimed to use mixed (qualitative and quantitative) methods to evaluate the role of FSL in reducing hospital admissions due to all causes, HbA1c, and reported hypoglycaemic episodes in people with diabetes living in a socially deprived region of Northwest England. Methods: Data were collected retrospectively from previous consultations, which coincided with the 6th -week, 6th -month and annual review including blood tests, hospital admissions due to any cause and reported hypoglycaemia. Also, FSL assessment and satisfaction semi-structured questionnaire was done to assess the impact of FSL on diabetes management and quality of life. Mixed-effects models were used to assess glycaemic control and reductions in hospital admissions and reported hypoglycaemic episodes. Results: Just 127 patients met the inclusion criteria. A multivariate linear mixed model method that analyses HbA1c data longitudinally revealed mean differences (mmol/mol) between baseline and post-FSL measurements, estimated by restricted maximum likelihood method (REML) of 9.64 (six weeks), 7.68 (six months) and 7.58 (annual review); all with a corresponding p-value of < 0.0001. For DKA patients, the bootstrap method revealed a significant reduction in mean HbA1c of 25.5, 95% confidence interval (CI) [8.8, 42.6] mmol/mol. It is demonstrated that FSL use for one year resulted in 59% reduction in hospital admissions and 46% reduction in reported hypoglycaemic episodes. Conclusion: The use of FSL resulted in statistically significant reductions in hospital admissions, HbA1c and reported hypoglycaemic episodes among diabetics in a socially deprived Northwest region of England. These outcomes show a direct association with a higher questionnaire score. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01424-4.

3.
Cell Genom ; : 100586, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38942024

ABSTRACT

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.

4.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Fungi , Gastrointestinal Microbiome , Mycobiome , Animals , Humans , Male , Mice , Feces/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genome, Fungal/genetics , Genomics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Metagenome , Phylogeny , Female , Adult , Middle Aged
5.
Analyst ; 149(12): 3380-3395, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38712606

ABSTRACT

Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.


Subject(s)
Plant Growth Regulators , Spectroscopy, Fourier Transform Infrared/methods , Plant Growth Regulators/analysis , Least-Squares Analysis , Plant Leaves/chemistry , Chromatography, High Pressure Liquid/methods , Support Vector Machine , Mass Spectrometry/methods , Principal Component Analysis
6.
New Phytol ; 243(1): 381-397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38741469

ABSTRACT

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Subject(s)
Fungal Proteins , Laccaria , Mycorrhizae , NADPH Oxidases , Reactive Oxygen Species , Symbiosis , Laccaria/physiology , Laccaria/genetics , Laccaria/metabolism , Mycorrhizae/physiology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Phosphorylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
7.
Ecotoxicol Environ Saf ; 278: 116390, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705037

ABSTRACT

Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5µm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.


Subject(s)
Benzo(a)pyrene , Liver , Microplastics , Oxidative Stress , Polystyrenes , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Benzo(a)pyrene/toxicity , Microplastics/toxicity , Male , Polystyrenes/toxicity , Liver/drug effects , Liver/pathology , Rats , Environmental Pollutants/toxicity , Antioxidants/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism
10.
Mycorrhiza ; 34(1-2): 69-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441669

ABSTRACT

Trees form symbioses with ectomycorrhizal (ECM) fungi, maintained in part through mutual benefit to both organisms. Our understanding of the signaling events leading to the successful interaction between the two partners requires further study. This is especially true for understanding the role of volatile signals produced by ECM fungi. Terpenoids are a predominant class of volatiles produced by ECM fungi. While several ECM genomes are enriched in the enzymes responsible for the production of these volatiles (i.e., terpene synthases (TPSs)) when compared to other fungi, we have limited understanding of the biochemical products associated with each enzyme and the physiological impact of specific terpenes on plant growth. Using a combination of phylogenetic analyses, RNA sequencing, and functional characterization of five TPSs from two distantly related ECM fungi (Laccaria bicolor and Pisolithus microcarpus), we investigated the role of these secondary metabolites during the establishment of symbiosis. We found that despite phylogenetic divergence, these TPSs produced very similar terpene profiles. We focused on the role of P. microcarpus terpenes and found that the fungus expressed a diverse array of mono-, di-, and sesquiterpenes prior to contact with the host. However, these metabolites were repressed following physical contact with the host Eucalyptus grandis. Exposure of E. grandis to heterologously produced terpenes (enriched primarily in γ -cadinene) led to a reduction in the root growth rate and an increase in P. microcarpus-colonized root tips. These results support a very early putative role of fungal-produced terpenes in the establishment of symbiosis between mycorrhizal fungi and their hosts.


Subject(s)
Basidiomycota , Mycorrhizae , Sesquiterpenes , Mycorrhizae/physiology , Plant Roots/metabolism , Phylogeny , Symbiosis/physiology , Sesquiterpenes/metabolism
11.
J Genomics ; 12: 44-46, 2024.
Article in English | MEDLINE | ID: mdl-38434106

ABSTRACT

Favolaschia claudopus, a wood-inhabiting basidiomycete of the Mycenaceae family, is considered an invasive species that has recently spread from Oceania to Europe. The CIRM-BRFM 2984 strain of this fungus was originally isolated from a basidiome collected from the fallen limb of a decayed oak tree in Southwest France. The genome sequence of this strain shared characteristics with other Mycenaceae species, including a large genome size and enriched content of protein-coding genes. The genome sequence provided here will facilitate further investigation on the factors that contribute to the successful global dissemination of F. claudopus.

12.
New Phytol ; 242(2): 658-674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375883

ABSTRACT

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Subject(s)
Cyclopentanes , Laccaria , Mycorrhizae , Oxylipins , Populus , Mycorrhizae/genetics , Populus/metabolism , Plant Roots/metabolism , Symbiosis/genetics , Laccaria/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Monoterpenes/metabolism
13.
Comput Struct Biotechnol J ; 23: 905-917, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38370975

ABSTRACT

Pleurotus pulmonarius, commonly known as the mini oyster mushroom, is highly esteemed for its crisp texture and umami flavor. Limited genetic diversity among P. pulmonarius cultivars raises concerns regarding its sustainable industrial production. To delve into the maternal genetic diversity of the principal P. pulmonarius cultivars, 36 cultivars and five wild isolates were subjected to de novo sequencing and assembly to generate high-quality mitogenome sequences. The P. pulmonarius mitogenomes had lengths ranging from 69,096 to 72,905 base pairs. The mitogenome sizes of P. pulmonarius and those of other mushroom species in the Pleurotus genus showed a significant positive correlation with the counts of LAGLIDAG and GIY-YIG homing endonucleases encoded by intronic open reading frames. A comparison of gene arrangements revealed an inversion of a fragment containing atp9-nad3-nad2 between P. pulmonarius and P. ostreatus. The mitogenomes of P. pulmonarius were clustered into three distinct clades, two of which were crowded with commercial cultivars. Clade I, all of which possess an inserted dpo gene, shared a maternal origin linked to an ancestral cultivar from Taiwan. Primers were designed to target the dpo gene, potentially safeguarding intellectual property rights. The wild isolates in Clade III exhibited more divergent mitogenomes, rendering them valuable for breeding.

14.
New Phytol ; 242(4): 1486-1506, 2024 May.
Article in English | MEDLINE | ID: mdl-38297461

ABSTRACT

Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.


Subject(s)
Agriculture , Ecology , Genomics , Mycorrhizae , Symbiosis , Mycorrhizae/physiology , Mycorrhizae/genetics , Symbiosis/genetics , Research , Plants/microbiology
15.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38198896

ABSTRACT

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Subject(s)
Hydrogen Peroxide , Levofloxacin , Polyporales , Anti-Bacterial Agents/chemistry , Fluoroquinolones/chemistry , Fungi/metabolism
16.
Mol Phylogenet Evol ; 193: 108010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195011

ABSTRACT

Nidulariaceae, also known as bird's nest fungi, is an understudied group of mushroom-forming fungi. The common name is derived from their nest-like morphology. Bird's nest fungi are ubiquitous wood decomposers or saprobes on dung. Recent studies showed that species in the Nidulariaceae form a monophyletic group with five sub-clades. However, phylogenetic relationships among genera and placement of Nidulariaceae are still unclear. We present phylogenomic analyses of bird's nest fungi and related Agaricales fungi to gain insight into the evolution of Nidulariaceae. A species tree with 17 newly generated genomes of bird's nest fungi and representatives from all major clades of Agaricales was constructed using 1044 single-copy genes to explore the intergeneric relationships and pinpoint the placement of Nidulariaceae within Agaricales. We corroborated the hypothesis that bird's nest fungi are sister to Squamanitaceae, which includes mushroom-shaped fungi with a stipe and pileus that are saprobes and mycoparasites. Lastly, stochastic character mapping of discrete traits on phylogenies (SIMMAP) suggests that the ancestor of bird's nest fungi likely possessed an evanescent, globose peridium without strings attaching to the spore packets (funiculi). This analysis suggests that the funiculus was gained twice and that the persistent, cupulate peridium form was gained at least four times and lost once. However, alternative coding schemes and datasets with a wider array of Agaricales produced conflicting results during ancestral state reconstruction, indicating that there is some uncertainty in the number of peridium transitions and that taxon sampling may significantly alter ancestral state reconstructions. Overall, our results suggest that several key morphological characters of Nidulariaceae have been subject to homoplasy.


Subject(s)
Cyathus , Animals , Phylogeny , Birds
17.
Trends Microbiol ; 32(2): 200-215, 2024 02.
Article in English | MEDLINE | ID: mdl-37689488

ABSTRACT

Establishing mutualistic relationships between plants and fungi is crucial for overcoming nutrient deficiencies in plants. This review highlights the intricate nutrient sensing and uptake mechanisms used by plants in response to phosphate and nitrogen starvation, as well as their interactions with plant immunity. The coordination of transport systems in both host plants and fungal partners ensures efficient nutrient uptake and assimilation, contributing to the long-term maintenance of these mutualistic associations. It is also essential to understand the distinct responses of fungal partners to external nutrient levels and forms, as they significantly impact the outcomes of symbiotic interactions. Our review also highlights the importance of evolutionarily younger and newly discovered root-fungus associations, such as endophytic associations, which offer potential benefits for improving plant nutrition. Mechanistic insights into the complex dynamics of phosphorus and nitrogen sensing within diverse root-fungus associations can facilitate the identification of molecular targets for engineering symbiotic systems and developing plant phenotypes with enhanced nutrient use efficiency. Ultimately, this knowledge can inform tailored fertilizer management practices to optimize plant nutrition.


Subject(s)
Nitrogen , Phosphorus , Symbiosis , Plants/microbiology , Fungi/physiology , Plant Roots/microbiology
18.
Analyst ; 149(2): 497-506, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38063458

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease with an increasing prevalence that is causing worldwide concern. The pre-diabetes stage is the only reversible stage in the patho-physiological process towards DM. Due to the limitations of traditional methods, the diagnosis and detection of DM and pre-diabetes are complicated, expensive, and time-consuming. Therefore, it would be of great benefit to develop a simple, rapid and inexpensive diagnostic test. Herein, the infrared (IR) spectra of serum samples from 111 DM patients, 111 pre-diabetes patients and 333 healthy volunteers were collected using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy and this was combined with the multivariate analysis of principal component analysis linear discriminant analysis (PCA-LDA) to develop a discriminant model to verify the diagnostic potential of this approach. The study found that the accuracy of the test model established by ATR-FTIR spectroscopy combined with PCA-LDA was 97%, and the sensitivity and specificity were 100% and 100% in the control group, 94% and 98% in the pre-diabetes group, and 91% and 98% in the DM group, respectively. This indicates that this method can effectively diagnose DM and pre-diabetes, which has far-reaching clinical significance.


Subject(s)
Diabetes Mellitus , Prediabetic State , Humans , Prediabetic State/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , Multivariate Analysis , Discriminant Analysis , Diabetes Mellitus/diagnosis , Principal Component Analysis , Ataxia Telangiectasia Mutated Proteins
19.
Talanta ; 269: 125482, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042146

ABSTRACT

Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is an emerging technology in the medical field. Blood D-dimer was initially studied as a marker of the activation of coagulation and fibrinolysis. It is mainly used as a potential diagnosis screening test for pulmonary embolism or deep vein thrombosis but was recently associated with COVID-19 severity. This study aimed to evaluate the use of ATR-FTIR spectroscopy with machine learning to classify plasma D-dimer concentrations. The plasma ATR-FTIR spectra from 100 patients were studied through principal component analysis (PCA) and two supervised approaches: genetic algorithm with linear discriminant analysis (GA-LDA) and partial least squares with linear discriminant (PLS-DA). The spectra were truncated to the fingerprint region (1800-1000 cm-1). The GA-LDA method effectively classified patients according to D-dimer cutoff (≤0.5 µg/mL and >0.5 µg/mL) with 87.5 % specificity and 100 % sensitivity on the training set, and 85.7 % specificity, and 95.6 % sensitivity on the test set. Thus, we demonstrate that ATR-FTIR spectroscopy might be an important additional tool for classifying patients according to D-dimer values. ATR-FTIR spectral analyses associated with clinical evidence can contribute to a faster and more accurate medical diagnosis, reduce patient morbidity, and save resources and demand for professionals.


Subject(s)
Spectroscopy, Fourier Transform Infrared , Humans , Spectroscopy, Fourier Transform Infrared/methods , Fourier Analysis , Discriminant Analysis , Principal Component Analysis , Ataxia Telangiectasia Mutated Proteins
20.
J Hazard Mater ; 465: 133336, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38142654

ABSTRACT

Microplastics (MPs) are ubiquitous contaminants that have become an emerging pollutant of concern, potentially threatening human health and ecosystem environments. Although current detection methods can accurately identify various types of MPs, it remains necessary to develop non-destructive and rapid methods to meet growing demands for detection. Herein, we combine a hyperspectral unmixing method and machine learning to analyse Raman imaging data of environmental MPs. Five MPs types including poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS), p-polyethylene (PE), polystyrene (PS) and polypropylene (PP) were visualized and identified. Individual or mixed pure or aged MPs along with environmental samples were analysed by Raman imaging. Alternating volume maximization (AVmax) combined with unconstrained least squares (UCLS) method estimated end members and abundance maps of each of the MPs in the samples. Pearson correlation coefficients (r) were used as the evaluation index; the results showed that there is a high similarity between the raw spectra and the average spectra calculated by AVmax. This indicates that Raman imaging based on machine learning and hyperspectral unmixing is a novel imaging analysis method that can directly identify and visualize MPs in the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...