Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Mov Disord ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38685873

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

2.
Am J Med Genet A ; : e63627, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613168

Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.

4.
Heliyon ; 10(5): e26656, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38434323

Pathogenic variants in the GNAO1 gene, encoding the alpha subunit of an inhibitory heterotrimeric guanine nucleotide-binding protein (Go) highly expressed in the mammalian brain, have been linked to encephalopathy characterized by different combinations of neurological symptoms, including developmental delay, hypotonia, epilepsy and hyperkinetic movement disorder with life-threatening paroxysmal exacerbations. Currently, there are only symptomatic treatments, and little is known about the pathophysiology of GNAO1-related disorders. Here, we report the characterization of a new in vitro model system based on patient-derived induced pluripotent stem cells (hiPSCs) carrying the recurrent p.G203R amino acid substitution in Gαo, and a CRISPR-Cas9-genetically corrected isogenic control line. RNA-Seq analysis highlighted aberrant cell fate commitment in neuronal progenitor cells carrying the p.G203R pathogenic variant. Upon differentiation into cortical neurons, patients' cells showed reduced expression of early neural genes and increased expression of astrocyte markers, as well as premature and defective differentiation processes leading to aberrant formation of neuronal rosettes. Of note, comparable defects in gene expression and in the morphology of neural rosettes were observed in hiPSCs from an unrelated individual harboring the same GNAO1 variant. Functional characterization showed lower basal intracellular free calcium concentration ([Ca2+]i), reduced frequency of spontaneous activity, and a smaller response to several neurotransmitters in 40- and 50-days differentiated p.G203R neurons compared to control cells. These findings suggest that the GNAO1 pathogenic variant causes a neurodevelopmental phenotype characterized by aberrant differentiation of both neuronal and glial populations leading to a significant alteration of neuronal communication and signal transduction.

7.
Environ Sci Pollut Res Int ; 30(38): 89140-89152, 2023 Aug.
Article En | MEDLINE | ID: mdl-37442937

The state of Rio Grande do Norte, located in the Northeast region of Brazil, has areas of granites and pegmatites with minerals that have varying concentrations of uranium. Consequently, high concentrations of radon gas, a carcinogenic substance for humans, can occur. The present study aimed to assess the occurrence of cancer and its association with exposure to sources of natural radioactivity using geological and geophysical information in the aforementioned state. The spatial dependence of pulmonary, breast, stomach, leukemia, and skin cancer cases with the location of radioisotope sources were analyzed using geoprocessing tools. The geoprocessing analysis showed a differential pattern of uranium emission throughout the state, with the highest emission from areas with pegmatites outcrops. A spatial dependency of cancer cases was shown (Moran index: 0.43; p < 0.01). Moreover, a higher rate of natural radioactivity-cancer cases was associated with the high-intensity natural radioactivity areas: odds ratio:1.21 (95% CI 1.20; 1.23), following the same pattern when separately compared the different related types of cancer. These results highlight the importance of natural radioactivity as a public health problem in the Brazilian environmental scenario, confirming the need for further studies as the first toward understanding and implementing health management strategies mitigating the exposures, especially in areas of environmental risk.


Neoplasms , Radioactivity , Radon , Uranium , Humans , Brazil/epidemiology
8.
Front Mol Neurosci ; 16: 1170061, 2023.
Article En | MEDLINE | ID: mdl-37324589

De novo CLTC mutations underlie a spectrum of early-onset neurodevelopmental phenotypes having developmental delay/intellectual disability (ID), epilepsy, and movement disorders (MD) as major clinical features. CLTC encodes the widely expressed heavy polypeptide of clathrin, a major component of the coated vesicles mediating endocytosis, intracellular trafficking, and synaptic vesicle recycling. The underlying pathogenic mechanism is largely unknown. Here, we assessed the functional impact of the recurrent c.2669C > T (p.P890L) substitution, which is associated with a relatively mild ID/MD phenotype. Primary fibroblasts endogenously expressing the mutated protein show reduced transferrin uptake compared to fibroblast lines obtained from three unrelated healthy donors, suggesting defective clathrin-mediated endocytosis. In vitro studies also reveal a block in cell cycle transition from G0/G1 to the S phase in patient's cells compared to control cells. To demonstrate the causative role of the p.P890L substitution, the pathogenic missense change was introduced at the orthologous position of the Caenorhabditis elegans gene, chc-1 (p.P892L), via CRISPR/Cas9. The resulting homozygous gene-edited strain displays resistance to aldicarb and hypersensitivity to PTZ, indicating defective release of acetylcholine and GABA by ventral cord motor neurons. Consistently, mutant animals show synaptic vesicle depletion at the sublateral nerve cords, and slightly defective dopamine signaling, highlighting a generalized deficit in synaptic transmission. This defective release of neurotransmitters is associated with their secondary accumulation at the presynaptic membrane. Automated analysis of C. elegans locomotion indicates that chc-1 mutants move slower than their isogenic controls and display defective synaptic plasticity. Phenotypic profiling of chc-1 (+/P892L) heterozygous animals and transgenic overexpression experiments document a mild dominant-negative behavior for the mutant allele. Finally, a more severe phenotype resembling that of chc-1 null mutants is observed in animals harboring the c.3146 T > C substitution (p.L1049P), homologs of the pathogenic c.3140 T > C (p.L1047P) change associated with a severe epileptic phenotype. Overall, our findings provide novel insights into disease mechanisms and genotype-phenotype correlations of CLTC-related disorders.

9.
Parkinsonism Relat Disord ; 111: 105405, 2023 06.
Article En | MEDLINE | ID: mdl-37142469

AIM: To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD: Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS: Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION: Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.


Movement Disorders , Humans , Male , Female , Child , Movement Disorders/drug therapy , Movement Disorders/pathology , Movement Disorders/physiopathology , Movement Disorders/surgery , Muscle Hypotonia , Developmental Disabilities , Case Reports as Topic
10.
Genes (Basel) ; 14(2)2023 01 26.
Article En | MEDLINE | ID: mdl-36833246

De novo mutations affecting the G protein α o subunit (Gαo)-encoding gene (GNAO1) cause childhood-onset developmental delay, hyperkinetic movement disorders, and epilepsy. Recently, we established Caenorhabditis elegans as an informative experimental model for deciphering pathogenic mechanisms associated with GNAO1 defects and identifying new therapies. In this study, we generated two additional gene-edited strains that harbor pathogenic variants which affect residues Glu246 and Arg209-two mutational hotspots in Gαo. In line with previous findings, biallelic changes displayed a variable hypomorphic effect on Gαo-mediated signaling that led to the excessive release of neurotransmitters by different classes of neurons, which, in turn, caused hyperactive egg laying and locomotion. Of note, heterozygous variants showed a cell-specific dominant-negative behavior, which was strictly dependent on the affected residue. As with previously generated mutants (S47G and A221D), caffeine was effective in attenuating the hyperkinetic behavior of R209H and E246K animals, indicating that its efficacy is mutation-independent. Conversely, istradefylline, a selective adenosine A2A receptor antagonist, was effective in R209H animals but not in E246K worms, suggesting that caffeine acts through both adenosine receptor-dependent and receptor-independent mechanisms. Overall, our findings provide new insights into disease mechanisms and further support the potential efficacy of caffeine in controlling dyskinesia associated with pathogenic GNAO1 mutations.


Caenorhabditis elegans , Epilepsy , Animals , Caffeine , Mutation , Epilepsy/genetics , GTP-Binding Proteins/genetics
11.
Front Neurol ; 13: 886751, 2022.
Article En | MEDLINE | ID: mdl-36003298

Over the last years, a constantly increasing number of genetic diseases associated with epilepsy and movement disorders have been recognized. An emerging group of conditions in this field is represented by genetic disorders affecting G-protein-coupled receptors (GPCRs)-cAMP signaling. This group of postsynaptic disorders includes genes encoding for proteins highly expressed in the central nervous system and involved in GPCR signal transduction and cAMP production (e.g., GNAO1, GNB1, ADCY5, GNAL, PDE2A, PDE10A, and HPCA genes). While the clinical phenotype associated with ADCY5 and GNAL is characterized by movement disorder in the absence of epilepsy, GNAO1, GNB1, PDE2A, PDE10A, and HPCA have a broader clinical phenotype, encompassing movement disorder, epilepsy, and neurodevelopmental disorders. We aimed to provide a comprehensive phenotypical characterization of genetic disorders affecting the cAMP signaling pathway, presenting with both movement disorders and epilepsy. Thus, we reviewed clinical features and genetic data of 203 patients from the literature with GNAO1, GNB1, PDE2A, PDE10A, and HPCA deficiencies. Furthermore, we delineated genotype-phenotype correlation in GNAO1 and GNB1 deficiency. This group of disorders presents with a highly recognizable clinical phenotype combining distinctive motor, epileptic, and neurodevelopmental features. A severe hyperkinetic movement disorder with potential life-threatening exacerbations and high susceptibility to a wide range of triggers is the clinical signature of the whole group of disorders. The existence of a distinctive clinical phenotype prompting diagnostic suspicion and early detection has relevant implications for clinical and therapeutic management. Studies are ongoing to clarify the pathophysiology of these rare postsynaptic disorders and start to design disease-specific treatments.

12.
Eur J Hum Genet ; 30(8): 984-988, 2022 08.
Article En | MEDLINE | ID: mdl-35581417

Krabbe disease (KD) is a rare lysosomal storage disorder caused by biallelic pathogenic variants in GALC. Most patients manifest the severe classic early-infantile form, while a small percentage of cases have later-onset types. We present two siblings with atypical clinical and neuroimaging phenotypes, compared to the classification of KD, who were found to carry biallelic loss-of-function GALC variants, including a recurrent 30 kb deletion and a previously unreported deep intronic variant that was identified by mRNA sequencing. This family represents a unique description in the KD literature and contributes to expanding the clinical and molecular spectra of this rare disorder.


Leukodystrophy, Globoid Cell , Galactosylceramidase/genetics , Humans , Introns , Leukodystrophy, Globoid Cell/genetics , Mutation , Phenotype , Siblings
13.
Clin Genet ; 102(1): 12-21, 2022 07.
Article En | MEDLINE | ID: mdl-35396703

Prompt diagnosis of complex phenotypes is a challenging task in clinical genetics. Whole exome sequencing has proved to be effective in solving such conditions. Here, we report on an unpredictable presentation of Werner Syndrome (WRNS) in a 12-year-old girl carrying a homozygous truncating variant in RECQL2, the gene mutated in WRNS, and a de novo activating missense change in PTPN11, the major Noonan syndrome gene, encoding SHP2, a protein tyrosine phosphatase positively controlling RAS function and MAPK signaling, which have tightly been associated with senescence in primary cells. All the major WRNS clinical criteria were present with an extreme precocious onset and were associated with mild intellectual disability, severe growth retardation and facial dysmorphism. Compared to primary fibroblasts from adult subjects with WRNS, proband's fibroblasts showed a dramatically reduced proliferation rate and competence, and a more accelerated senescence, in line with the anticipated WRNS features occurring in the child. In vitro functional characterization of the SHP2 mutant documented its hyperactive behavior and a significantly enhanced activation of the MAPK pathway. Based on the functional interaction of WRN and MAPK signaling in processes relevant to replicative senescence, these findings disclose a unique phenotype likely resulting from negative genetic interaction.


Noonan Syndrome , Werner Syndrome , Child , Gain of Function Mutation , Humans , Mutation , Noonan Syndrome/genetics , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Werner Syndrome/genetics
14.
J Allergy Clin Immunol ; 150(1): 223-228, 2022 07.
Article En | MEDLINE | ID: mdl-35157921

BACKGROUND: Pathogenic missense variants in cell division control protein 42 (CDC42) differentially affect protein function, causing a clinically wide phenotypic spectrum variably affecting neurodevelopment, hematopoiesis, and immune response. More recently, 3 variants at the C-terminus of CDC42 were proposed to similarly impact protein function and cause a novel autoinflammatory disorder. OBJECTIVES: We sought to clinically and functionally classify these variants to improve patient management. METHODS: Comparative analysis of the available clinical data and medical history of patients was performed. In vitro and in vivo studies were carried out to functionally characterize individual variants. RESULTS: Differently from what had previously been observed for the p.R186C change causing neonatal-onset cytopenia, autoinflammation, and recurrent hemophagocytic lymphohistiocytosis, p.C188Y and p.∗192Cext∗24 promoted accelerated protein degradation. Unprenylated CDC42C188Y did not behave as a membrane-bound protein, whereas the residual CDC42∗192Cext∗24 mutant replicated the CDC42R186C behavior, being targeted to the Golgi apparatus in a palmitoylation-dependent manner. Assessment of in vitro polarized migration and development in Caenorhabditis elegans documented a loss-of-function behavior of the p.C188Y and p.∗192Cext∗24 variants. Consistently, the 3 pathogenic variants were associated with different clinical presentations, with dysmorphisms, severity, and age of onset of cytopenia and extent of autoinflammation representing major differences. CONCLUSIONS: Pathogenic variants at the CDC42 C-terminus differently impact protein stability, localization, and function, and cause different diseases, with p.R186C specifically associated with neonatal-onset pancytopenia and severe autoinflammation/hemophagocytic lymphohistiocytosis requiring emapalumab and bone marrow transplantation, and p.C188Y and p.∗192Cext∗24 causing anakinra-sensitive autoinflammation.


Immune System Diseases , Lymphohistiocytosis, Hemophagocytic , cdc42 GTP-Binding Protein , Hematopoiesis , Humans , Infant, Newborn , Lymphohistiocytosis, Hemophagocytic/genetics , Mutation , cdc42 GTP-Binding Protein/genetics
15.
J Med Genet ; 59(2): 170-179, 2022 02.
Article En | MEDLINE | ID: mdl-33323470

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Chromatin/metabolism , Neurodevelopmental Disorders/genetics , Protein Kinases/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male , Metabolome , Middle Aged , Mutation , Mutation, Missense , Neurodevelopmental Disorders/enzymology , Pedigree , Protein Interaction Mapping , Protein Kinases/metabolism , Exome Sequencing , Young Adult
16.
Hum Mol Genet ; 31(6): 929-941, 2022 03 21.
Article En | MEDLINE | ID: mdl-34622282

Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.


Caenorhabditis elegans Proteins , Dyskinesias , Acetylcholinesterase/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caffeine/pharmacology , Drug Evaluation, Preclinical , Dyskinesias/drug therapy , Dyskinesias/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/pharmacology , GTP-Binding Proteins/genetics , Mutation , Neurotransmitter Agents/metabolism
17.
Brain ; 145(1): 208-223, 2022 03 29.
Article En | MEDLINE | ID: mdl-34382076

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Alkyl and Aryl Transferases , Myoclonus , Neurodegenerative Diseases , Retinitis Pigmentosa , Child , Dolichols/metabolism , Humans , Neurodegenerative Diseases/genetics , Retinitis Pigmentosa/genetics
18.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Article En | MEDLINE | ID: mdl-34718610

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Blood Glucose/metabolism , Hyperglycemia/genetics , Malate Dehydrogenase/genetics , Adult , Aged , Aged, 80 and over , Animals , Animals, Genetically Modified , Blood Glucose/analysis , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Case-Control Studies , Cell Line, Tumor , DNA Mutational Analysis , Female , Gain of Function Mutation , Humans , Hyperglycemia/blood , Insulin/analysis , Insulin/metabolism , Insulin Secretion/genetics , Islets of Langerhans , Malate Dehydrogenase/metabolism , Male , Mice , Middle Aged , Models, Animal , Primary Cell Culture , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Exome Sequencing
19.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Article En | MEDLINE | ID: mdl-34714648

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Oncogenes , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , src Homology Domains/drug effects , Animals , Binding Sites , Mutation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Zebrafish/embryology
20.
Clin Genet ; 100(5): 563-572, 2021 11.
Article En | MEDLINE | ID: mdl-34346503

Neurofibromatosis 1 (NF1) is a disorder characterized by variable expressivity caused by loss-of-function variants in NF1, encoding neurofibromin, a protein negatively controlling RAS signaling. We evaluated whether concurrent variation in proteins functionally linked to neurofibromin contribute to the variable expressivity of NF1. Parallel sequencing of a RASopathy gene panel in 138 individuals with molecularly confirmed clinical diagnosis of NF1 identified missense variants in PTPN11, encoding SHP2, a positive regulator of RAS signaling, in four subjects from three unrelated families. Three subjects were heterozygous for a gain-of-function variant and showed a severe expression of NF1 (developmental delay, multiple cerebral neoplasms and peculiar cortical MRI findings), and features resembling Noonan syndrome (a RASopathy caused by activating variants in PTPN11). Conversely, the fourth subject, who showed an attenuated presentation, carried a previously unreported PTPN11 variant that had a hypomorphic behavior in vitro. Our findings document that functionally relevant PTPN11 variants occur in a small but significant proportion of subjects with NF1 modulating disease presentation, suggesting a model in which the clinical expression of pathogenic NF1 variants is modified by concomitant dysregulation of protein(s) functionally linked to neurofibromin. We also suggest targeting of SHP2 function as an approach to treat evolutive complications of NF1.


Brain/abnormalities , Brain/diagnostic imaging , Magnetic Resonance Imaging , Mutation , Neurofibromatosis 1/diagnosis , Neurofibromatosis 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Adolescent , Child , DNA Mutational Analysis , Family , Female , Genes, Neurofibromatosis 1 , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging/methods , Male , Models, Molecular , Mutation, Missense , Pedigree , Phenotype , Protein Conformation , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Structure-Activity Relationship
...