Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Brain Res ; 1840: 149082, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866307

ABSTRACT

Ubiquitin specific protease 18 (USP18) serves as a potent inhibitor of Type I interferon (IFN) signaling. Previous studies have shown that Usp18 deficient (homozygous Usp18 gene knockout) mice exhibit hydrocephalus; however, the precise molecular mechanism underlying hydrocephalus development remains elusive. In this study, we demonstrate that mice lacking both type I IFN receptor subunit 1 (Ifnar1) and Usp18 (Ifnar1/Usp18 double knockout mice) are viable and do not display a hydrocephalus phenotype. Moreover, we observed that suppression of USP18 in ependymal cells treated with IFN significantly increased cell death, including pyroptosis, and decreased proliferation. These findings suggest that heightened sensitivity to type I IFN during brain development contributes to the onset of hydrocephalus. Furthermore, they imply that inhibition of IFN signaling may hold promise as a therapeutic strategy for hydrocephalus.

2.
Blood ; 143(25): 2666-2670, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38635757

ABSTRACT

ABSTRACT: Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking. Using newly developed megakaryocyte-specific LOX knockout mice, we show that LOX expressed in these scarce bone marrow cells affects bone volume and collagen architecture in a sex-dependent manner.


Subject(s)
Megakaryocytes , Mice, Knockout , Protein-Lysine 6-Oxidase , Animals , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mice , Male , Female , Bone and Bones/metabolism , Sex Characteristics , Collagen/metabolism , Gene Deletion , Sex Factors , Extracellular Matrix Proteins
3.
Am J Hematol ; 99(3): 336-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38165047

ABSTRACT

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.


Subject(s)
Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Animals , Mice , Megakaryocytes/metabolism , Primary Myelofibrosis/genetics , Bone Marrow , Thrombopoiesis/genetics , Thrombocythemia, Essential/metabolism , Blood Platelets/metabolism , Ion Channels/genetics , Ion Channels/metabolism
4.
Front Oncol ; 12: 929498, 2022.
Article in English | MEDLINE | ID: mdl-35880162

ABSTRACT

Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.

5.
Exp Hematol ; 106: 31-39, 2022 02.
Article in English | MEDLINE | ID: mdl-34910941

ABSTRACT

Mature megakaryocytes, the platelet precursors, originate from hematopoietic stem cell progenitors, which, once committed to this lineage, undergo endomitosis leading to polyploidization. The process entails repeated rounds of DNA replication without cell division, yielding polyploid cells. Supporting the cell's developmental process and various cellular functions are integrin receptors, a conduit of communication between the extracellular environment and the cell actin cytoskeleton. Integrins are heterodimers of α and ß subunits, where different combinations of the known 18 α and 8 ß subunits confer specificity to the receptor. Integrin ligands range from extracellular matrices through soluble ligands, infectious agents, and counterreceptors, to cells. In this review, we describe the different integrins expressed on bone marrow megakaryocytes and their attributed roles in lineage development and cellular functions, including adhesion, spreading, proplatelet formation, and functional interaction with other cells. Pathologies associated with dysregulated megakaryocyte integrin expression are also reviewed.


Subject(s)
Integrins/metabolism , Megakaryocytes/cytology , Thrombopoiesis , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Adhesion , Humans , Megakaryocytes/metabolism
8.
Arterioscler Thromb Vasc Biol ; 40(10): e262-e272, 2020 10.
Article in English | MEDLINE | ID: mdl-32814440

ABSTRACT

OBJECTIVE: The risk of thrombosis in myeloproliferative neoplasms, such as primary myelofibrosis varies depending on the type of key driving mutation (JAK2 [janus kinase 2], CALR [calreticulin], and MPL [myeloproliferative leukemia protein or thrombopoietin receptor]) and the accompanying mutations in other genes. In the current study, we sought to examine the propensity for thrombosis, as well as platelet activation properties in a mouse model of primary myelofibrosis induced by JAK2V617F (janus kinase 2 with valine to phenylalanine substitution on codon 617) mutation. Approach and Results: Vav1-hJAK2V617F transgenic mice show hallmarks of primary myelofibrosis, including significant megakaryocytosis and bone marrow fibrosis, with a moderate increase in red blood cells and platelet number. This mouse model was used to study responses to 2 models of vascular injury and to investigate platelet properties. Platelets derived from the mutated mice have reduced aggregation in response to collagen, reduced thrombus formation and thrombus size, as demonstrated using laser-induced or FeCl3-induced vascular injury models, and increased bleeding time. Strikingly, the mutated platelets had a significantly reduced number of dense granules, which could explain impaired ADP secretion upon platelet activation, and a diminished second wave of activation. CONCLUSIONS: Together, our study highlights for the first time the influence of a hyperactive JAK2 on platelet activation-induced ADP secretion and dense granule homeostasis, with consequent effects on platelet activation properties.


Subject(s)
Blood Coagulation , Blood Platelets/enzymology , Carotid Artery Injuries/enzymology , Janus Kinase 2/blood , Megakaryocytes/enzymology , Platelet Activation , Primary Myelofibrosis/enzymology , Thrombosis/enzymology , Animals , Carotid Artery Injuries/blood , Carotid Artery Injuries/genetics , Disease Models, Animal , Janus Kinase 2/genetics , Mice, Transgenic , Mutation , Platelet Aggregation , Primary Myelofibrosis/blood , Primary Myelofibrosis/genetics , Thrombopoiesis , Thrombosis/blood , Thrombosis/genetics
9.
Blood ; 135(25): 2286-2291, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32294178

ABSTRACT

Excessive accumulation of extracellular matrix (ECM) is a hallmark of bone marrow (BM) milieu in primary myelofibrosis (PMF). Because cells have the ability to adhere to the surrounding ECM through integrin receptors, we examined the hypothesis that an abnormal ECM-integrin receptor axis contributes to BM megakaryocytosis in JAK2V617F+ PMF. Secretion of ECM protein fibronectin (FN) by BM stromal cells from PMF patients correlates with fibrosis and disease severity. Here, we show that Vav1-hJAK2V617F transgenic mice (JAK2V617F+) have high BM FN content associated with megakaryocytosis and fibrosis. Further, megakaryocytes from JAK2V617F+ mice have increased cell surface expression of the α5 subunit of the α5ß1 integrin, the major FN receptor in megakaryocytes, and augmented adhesion to FN compared with wild-type controls. Reducing adhesion to FN by an inhibitory antibody to the α5 subunit effectively reduces the percentage of CD41+ JAK2V617F+ megakaryocytes in vitro and in vivo. Corroborating our findings in mice, JAK2V617F+ megakaryocytes from patients showed elevated expression of α5 subunit, and a neutralizing antibody to α5 subunit reduced adhesion to FN and megakaryocyte number derived from CD34+ cells. Our findings reveal a previously unappreciated contribution of FN-α5ß1 integrin to megakaryocytosis in JAK2V617F+ PMF.


Subject(s)
Integrin alpha5beta1/physiology , Megakaryocytes/pathology , Primary Myelofibrosis/pathology , Animals , Bone Marrow/metabolism , Cell Adhesion , Cells, Cultured , Extracellular Matrix/metabolism , Female , Humans , Integrin alpha5/biosynthesis , Integrin alpha5/genetics , Integrin alpha5/immunology , Integrin alpha5beta1/antagonists & inhibitors , Janus Kinase 2/genetics , Male , Megakaryocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense , Primary Myelofibrosis/genetics
10.
JACC Basic Transl Sci ; 4(6): 684-697, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31709318

ABSTRACT

Janus kinase 2 (valine to phenylalanine at residue 617) (JAK2 V617F ) mutations lead to myeloproliferative neoplasms associated with elevated myeloid, erythroid, and megakaryocytic cells. Alternatively these same mutations can lead to the condition of clonal hematopoiesis with no impact on blood cell counts. Here, a model of myeloid-restricted JAK2 V617F expression from lineage-negative bone marrow cells was developed and evaluated. This model displayed greater cardiac inflammation and dysfunction following permanent left anterior descending artery ligation and transverse aortic constriction. These data suggest that JAK2 V617F mutations arising in myeloid progenitor cells may contribute to cardiovascular disease by promoting the proinflammatory properties of circulating myeloid cells.

11.
Int J Hematol ; 110(6): 699-708, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31637674

ABSTRACT

Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm (MPN) that usually portends a poor prognosis with limited therapeutic options available. Currently, only allogeneic stem cell transplantation is curative in those who are candidates, while administration of the JAK1/2 inhibitor ruxolitinib carries a risk of worsening cytopenia. The limited therapeutic options available highlight the need for the development of novel treatments for PMF. Lysyl oxidase (LOX), an enzyme vital for collagen cross-linking and extracellular matrix stiffening, has been found to be upregulated in PMF. Herein, we evaluate two novel LOX inhibitors, PXS-LOX_1 and PXS-LOX_2, in two animal models of PMF (GATA1low and JAK2V617F-mutated mice). Specifically, PXS-LOX_1 or vehicle was given to 15- to 16-week-old GATA1low mice via intraperitoneal injection at a dose of 15 mg/kg four times a week for 9 weeks. PXS-LOX_1 was found to significantly decrease the bone marrow fibrotic burden and megakaryocyte number compared to vehicle in both male and female GATA1low mice. Given these results, PXS-LOX_1 was then tested in 15- to 17-week-old JAK2V617F-mutated mice at a dose of 30 mg/kg four times a week for 8 weeks. Again, we observed a significant decrease in bone marrow fibrotic burden. PXS-LOX_2, a LOX inhibitor with improved oral bioavailability, was next evaluated in 15- to 17-week-old JAK2V617F-mutated mice at a dose of 5 mg/kg p.o. four times a week for 8 weeks. This inhibitor also resulted in a significant decrease in bone marrow fibrosis, albeit with a more pronounced amelioration in female mice. Taking these results together, PXS-LOX_1 and PXS-LOX_2 appear to be promising new candidates for the treatment of fibrosis in PMF.


Subject(s)
Enzyme Inhibitors/pharmacology , Primary Myelofibrosis/drug therapy , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Animals , Biological Availability , Bone Marrow Neoplasms , Disease Models, Animal , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Female , Male , Mice , Sex Factors , Treatment Outcome
12.
J Am Soc Nephrol ; 29(3): 1063-1072, 2018 03.
Article in English | MEDLINE | ID: mdl-29343519

ABSTRACT

Individuals with CKD are particularly predisposed to thrombosis after vascular injury. Using mouse models, we recently described indoxyl sulfate, a tryptophan metabolite retained in CKD and an activator of tissue factor (TF) through aryl hydrocarbon receptor (AHR) signaling, as an inducer of thrombosis across the CKD spectrum. However, the translation of findings from animal models to humans is often challenging. Here, we investigated the uremic solute-AHR-TF thrombosis axis in two human cohorts, using a targeted metabolomics approach to probe a set of tryptophan products and high-throughput assays to measure AHR and TF activity. Analysis of baseline serum samples was performed from 473 participants with advanced CKD from the Dialysis Access Consortium Clopidogrel Prevention of Early AV Fistula Thrombosis trial. Participants with subsequent arteriovenous thrombosis had significantly higher levels of indoxyl sulfate and kynurenine, another uremic solute, and greater activity of AHR and TF, than those without thrombosis. Pattern recognition analysis using the components of the thrombosis axis facilitated clustering of the thrombotic and nonthrombotic groups. We further validated these findings using 377 baseline samples from participants in the Thrombolysis in Myocardial Infarction II trial, many of whom had CKD stage 2-3. Mechanistic probing revealed that kynurenine enhances thrombosis after vascular injury in an animal model and regulates thrombosis in an AHR-dependent manner. This human validation of the solute-AHR-TF axis supports further studies probing its utility in risk stratification of patients with CKD and exploring its role in other diseases with heightened risk of thrombosis.


Subject(s)
Indican/blood , Kynurenine/blood , Receptors, Aryl Hydrocarbon/blood , Renal Insufficiency, Chronic/blood , Thromboplastin/metabolism , Thrombosis/blood , Vascular System Injuries/blood , Vascular System Injuries/complications , Adult , Aged , Clinical Trials as Topic , Female , Humans , Male , Metabolomics , Middle Aged , Pattern Recognition, Automated , Renal Insufficiency, Chronic/complications , Signal Transduction , Thrombosis/etiology , Uremia/blood , Uremia/complications
13.
Sci Transl Med ; 9(417)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29167396

ABSTRACT

Chronic kidney disease (CKD/uremia) remains vexing because it increases the risk of atherothrombosis and is also associated with bleeding complications on standard antithrombotic/antiplatelet therapies. Although the associations of indolic uremic solutes and vascular wall proteins [such as tissue factor (TF) and aryl hydrocarbon receptor (AHR)] are being defined, the specific mechanisms that drive the thrombotic and bleeding risks are not fully understood. We now present an indolic solute-specific animal model, which focuses on solute-protein interactions and shows that indolic solutes mediate the hyperthrombotic phenotype across all CKD stages in an AHR- and TF-dependent manner. We further demonstrate that AHR regulates TF through STIP1 homology and U-box-containing protein 1 (STUB1). As a ubiquitin ligase, STUB1 dynamically interacts with and degrades TF through ubiquitination in the uremic milieu. TF regulation by STUB1 is supported in humans by an inverse relationship of STUB1 and TF expression and reduced STUB1-TF interaction in uremic vessels. Genetic or pharmacological manipulation of STUB1 in vascular smooth muscle cells inhibited thrombosis in flow loops. STUB1 perturbations reverted the uremic hyperthrombotic phenotype without prolonging the bleeding time, in contrast to heparin, the standard-of-care antithrombotic in CKD patients. Our work refines the thrombosis axis (STUB1 is a mediator of indolic solute-AHR-TF axis) and expands the understanding of the interconnected relationships driving the fragile thrombotic state in CKD. It also establishes a means of minimizing the uremic hyperthrombotic phenotype without altering the hemostatic balance, a long-sought-after combination in CKD patients.


Subject(s)
Hemorrhage/metabolism , Thrombosis/metabolism , Ubiquitin-Protein Ligases/metabolism , Uremia/metabolism , Analysis of Variance , Animals , Female , Hemorrhage/enzymology , Hemorrhage/pathology , Male , Mice , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Thrombosis/enzymology , Thrombosis/pathology , Ubiquitin-Protein Ligases/genetics , Uremia/enzymology , Uremia/pathology
15.
J Biol Methods ; 3(4)2016.
Article in English | MEDLINE | ID: mdl-28008415

ABSTRACT

Bone marrow (BM) reticulin fibrosis (RF), revealed by silver staining of tissue sections, is associated with myeloproliferative neoplasms, while tools for quantitative assessment of reticulin deposition throughout a femur BM are still in need. Here, we present such a method, allowing via analysis of hundreds of composite images to identify a patchy nature of RF throughout the BM during disease progression in a mouse model of myelofibrosis. To this end, initial conversion of silver stained BM color images into binary images identified two limitations: variable color, owing to polychromatic staining of reticulin fibers, and variable background in different sections of the same batch, limiting application of the color deconvolution method, and use of constant threshold, respectively. By blind coding image identities, to allow for threshold input (still within a narrow range), and using shape filtering to further eliminate background we were able to quantitate RF in myelofibrotic Gata-1low (experimental) and wild type (control) mice as a function of animal age. Color images spanning the whole femur BM were batch-analyzed using ImageJ software, aided by our two newly added macros. The results show heterogeneous RF density in different areas of the marrow of Gata-1low mice, with degrees of heterogeneity reduced upon aging. This method can be applied uniformly across laboratories in studies assessing RF remodeling induced by aging or other conditions in animal models.

16.
Blood ; 127(11): 1493-501, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26755713

ABSTRACT

Lysyl oxidase (LOX) is overexpressed in various pathologies associated with thrombosis, such as arterial stenosis and myeloproliferative neoplasms (MPNs). LOX is elevated in the megakaryocytic lineage of mouse models of MPNs and in patients with MPNs. To gain insight into the role of LOX in thrombosis and platelet function without compounding the influences of other pathologies, transgenic mice expressing LOX in wild-type megakaryocytes and platelets (Pf4-Lox(tg/tg)) were generated. Pf4-Lox(tg/tg) mice had a normal number of platelets; however, time to vessel occlusion after endothelial injury was significantly shorter in Pf4-Lox(tg/tg) mice, indicating a higher propensity for thrombus formation in vivo. Exploring underlying mechanisms, we found that Pf4-Lox(tg/tg) platelets adhere better to collagen and have greater aggregation response to lower doses of collagen compared with controls. Platelet activation in response to the ligand for collagen receptor glycoprotein VI (cross-linked collagen-related peptide) was unaffected. However, the higher affinity of Pf4-Lox(tg/tg) platelets to the collagen sequence GFOGER implies that the collagen receptor integrin α2ß1 is affected by LOX. Taken together, our findings demonstrate that LOX enhances platelet activation and thrombosis.


Subject(s)
Blood Platelets/drug effects , Collagen/pharmacology , Platelet Activation/physiology , Protein-Lysine 6-Oxidase/physiology , Thrombophilia/enzymology , Animals , Blood Platelets/cytology , Carotid Artery Injuries/complications , Carotid Artery Thrombosis/etiology , Integrin alpha2beta1/physiology , Megakaryocytes/enzymology , Mice , Mice, Transgenic , Peptide Fragments/pharmacology , Platelet Adhesiveness/genetics , Platelet Adhesiveness/physiology , Platelet Aggregation/drug effects , Platelet Aggregation/genetics , Platelet Factor 4/genetics , Promoter Regions, Genetic , Protein-Lysine 6-Oxidase/genetics , Rats , Thrombophilia/genetics
17.
J Exp Med ; 212(5): 649-63, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25870200

ABSTRACT

Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1(+)/cmyb(+) HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl(+) hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP-protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.


Subject(s)
Adenosine/metabolism , Aorta/metabolism , Endothelium, Vascular/metabolism , Hematopoietic Stem Cells/metabolism , Receptor, Adenosine A2B/metabolism , Adenosine/genetics , Animals , Aorta/cytology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endothelium, Vascular/cytology , Hematopoietic Stem Cells/cytology , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , Mice, Knockout , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Receptor, Adenosine A2B/genetics
18.
J Am Anim Hosp Assoc ; 51(1): 56-63, 2015.
Article in English | MEDLINE | ID: mdl-25415212

ABSTRACT

A 3 yr old wirehaired fox terrier was presented to his primary care veterinarian with fever, thrombocytopenia, and generalized crusting dermatitis. The skin lesion had progressed for at least 18 days, and thrombocytopenia had developed 3 days before presentation. Histopathology and direct immunofluorescence studies of the skin were consistent with pemphigus foliaceus (PF). Immunofluorescence revealed immunoglobulin G deposition around the keratinocytes in the stratum spinosum. A diagnosis of immune-mediated thrombocytopenia (IMT) was confirmed by the presence of platelet surface-associated immunoglobulin using flow cytometry. Systemic immunosuppressive therapy with cyclosporine and azathioprine was effective, and the dog survived for >2 years from the initial presentation. IMT is rarely associated with PF. This appears to be the first detailed report of a definitive diagnosis of concurrent PF and IMT in a dog. The authors' findings indicate that canine PF could be complicated by hematologic immune-mediated diseases such as IMT.


Subject(s)
Dog Diseases/pathology , Pemphigus/veterinary , Purpura, Thrombocytopenic, Idiopathic/veterinary , Animals , Azathioprine/therapeutic use , Cyclosporine/therapeutic use , Dog Diseases/drug therapy , Dogs , Immunosuppressive Agents/therapeutic use , Male , Pemphigus/drug therapy , Pemphigus/pathology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology
19.
Blood ; 124(14): 2203-12, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25150295

ABSTRACT

RUNX1 is a master transcription factor in hematopoiesis and mediates the specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs). Disruptions in RUNX1 are well known to lead to hematologic disease. In this study, we sought to identify and characterize RUNX1 target genes in HSPCs by performing RUNX1 chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) using a murine HSPC line and complementing this data with our previously described gene expression profiling of primary wild-type and RUNX1-deficient HSPCs (Lineage(-)/cKit(+)/Sca1(+)). From this analysis, we identified and confirmed that Hmga2, a known oncogene, as a direct target of RUNX1. Hmga2 was strongly upregulated in RUNX1-deficient HSPCs, and the promoter of Hmga2 was responsive in a cell-type dependent manner upon coexpression of RUNX1. Conditional Runx1 knockout mice exhibit expansion of their HSPCs and myeloid progenitors as hallmark phenotypes. To further validate and establish that Hmga2 plays a role in inducing HSPC expansion, we generated mouse models of HMGA2 and RUNX1 deficiency. Although mice lacking both factors continued to display higher frequencies of HSPCs, the expansion of myeloid progenitors was effectively rescued. The data presented here establish Hmga2 as a transcriptional target of RUNX1 and a critical regulator of myeloid progenitor expansion.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation , HMGA2 Protein/metabolism , Myeloid Progenitor Cells/cytology , Animals , Binding Sites , Cell Line , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Humans , Jurkat Cells , K562 Cells , Mice , Mice, Knockout , Mice, Transgenic , NIH 3T3 Cells , Phenotype , Transcription Factors/metabolism , Up-Regulation
20.
J Am Anim Hosp Assoc ; 50(4): 278-83, 2014.
Article in English | MEDLINE | ID: mdl-24855086

ABSTRACT

Cutaneous sterile pyogranuloma/granuloma syndrome (SPGS) is a locally restricted multinodular dermatitis. Affected dogs are typically healthy, but a few show systemic signs. Herein, a case of a dog presenting with generalized ulcerative dermatitis with systemic signs of mild anemia and an increased C-reactive protein level is described. Cutaneous SPGS was diagnosed by histopathology, negative staining causative organisms, and polymerase chain reaction for Mycobacterium spp. Successful treatment was achieved by immunosuppressive drugs, including prednisolone and azathioprine, administered for at least 20 mo. Recurrences of skin lesions were observed when prednisolone and/or azathioprine were discontinued. Long-term management with immunosuppressive agents may be required if the affected dog exhibits severe symptoms of cutaneous SPGS.


Subject(s)
Dog Diseases/diagnosis , Granuloma/veterinary , Skin Diseases/veterinary , Animals , Breeding , Diagnosis, Differential , Dog Diseases/pathology , Dogs , Granuloma/diagnosis , Male , Skin Diseases/diagnosis , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...