Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 38(1): 30, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164492

ABSTRACT

The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011-2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 ). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.


Subject(s)
Computer Simulation , Machine Learning , Proteins , Humans , Proteins/chemistry , Algorithms , Drug Discovery/methods , Drug Design
2.
Front Pharmacol ; 12: 759337, 2021.
Article in English | MEDLINE | ID: mdl-34759826

ABSTRACT

Anticalin® proteins have been proven as versatile clinical stage biotherapeutics. Due to their small size (∼20 kDa), they harbor a short intrinsic plasma half-life which can be extended, e.g., by fusion with IgG or Fc. However, for antagonism of co-immunostimulatory Tumor Necrosis Factor Receptor Superfamily (TNFRSF) members in therapy of autoimmune and inflammatory diseases, a monovalent, pharmacokinetically optimized Anticalin protein format that avoids receptor clustering and therefore potential activation is favored. We investigated the suitability of an affinity-improved streptococcal Albumin-Binding Domain (ABD) and the engineered Fab-selective Immunoglobulin-Binding Domain (IgBD) SpGC3Fab for plasma Half-Life Extension (HLE) of an OX40-specific Anticalin and bispecific Duocalin proteins, neutralizing OX40 and a second co-immunostimulatory TNFRSF member. The higher affinity of ABD fusion proteins to human serum albumin (HSA) and Mouse Serum Albumin (MSA), with a 4 to 5-order of magnitude lower KD compared with the binding affinity of IgBD fusions to human/mouse IgG, translated into longer terminal plasma half-lives (t 1/2). Hence, the anti-OX40 Anticalin-ABD protein reached t 1/2 values of ∼40 h in wild-type mice and 110 h in hSA/hFcRn double humanized mice, in contrast to ∼7 h observed for anti-OX40 Anticalin-IgBD in wild-type mice. The pharmacokinetics of an anti-OX40 Anticalin-Fc fusion protein was the longest in both models (t 1/2 of 130 h and 146 h, respectively). Protein formats composed of two ABDs or IgBDs instead of one single HLE domain clearly showed longer presence in the circulation. Importantly, Anticalin-ABD and -IgBD fusions showed OX40 receptor binding and functional competition with OX40L-induced cellular reactivity in the presence of albumin or IgG, respectively. Our results suggest that fusion to ABD or IgBD can be a versatile platform to tune the plasma half-life of Anticalin proteins in response to therapeutic needs.

3.
Mol Cancer Ther ; 18(10): 1832-1843, 2019 10.
Article in English | MEDLINE | ID: mdl-31350344

ABSTRACT

The FGFR4/FGF19 signaling axis is overactivated in 20% of liver tumors and currently represents a promising targetable signaling mechanism in this cancer type. However, blocking FGFR4 or FGF19 has proven challenging due to its physiological role in suppressing bile acid synthesis which leads to increased toxic bile acid plasma levels upon FGFR4 inhibition. An FGFR4-targeting antibody, U3-1784, was generated in order to investigate its suitability as a cancer treatment without major side effects.U3-1784 is a high-affinity fully human antibody that was obtained by phage display technology and specifically binds to FGFR4. The antibody inhibits cell signaling by competing with various FGFs for their FGFR4 binding site thereby inhibiting receptor activation and downstream signaling via FRS2 and Erk. The inhibitory effect on tumor growth was investigated in 10 different liver cancer models in vivo The antibody specifically slowed tumor growth of models overexpressing FGF19 by up to 90% whereas tumor growth of models not expressing FGF19 was unaffected. In cynomolgus monkeys, intravenous injection of U3-1784 caused elevated serum bile acid and liver enzyme levels indicating potential liver damage. These effects could be completely prevented by the concomitant oral treatment with the bile acid sequestrant colestyramine, which binds and eliminates bile acids in the gut. These results offer a new biomarker-driven treatment modality in liver cancer without toxicity and they suggest a general strategy for avoiding adverse events with FGFR4 inhibitors.


Subject(s)
Antibodies, Monoclonal/toxicity , Antibodies, Monoclonal/therapeutic use , Receptor, Fibroblast Growth Factor, Type 4/immunology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cholestyramine Resin/pharmacology , Female , Gene Expression Regulation/drug effects , Humans , Ileum/drug effects , Ileum/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Signal Transduction/drug effects , Sorafenib/pharmacology
4.
Oncoimmunology ; 7(2): e1393597, 2018.
Article in English | MEDLINE | ID: mdl-29308327

ABSTRACT

Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8+ T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8+ T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo. The EGFR+ human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2-/-γc-/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1-/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.

SELECTION OF CITATIONS
SEARCH DETAIL