Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 229(1): 272-283, 2021 01.
Article in English | MEDLINE | ID: mdl-32171020

ABSTRACT

Structural changes during severe drought stress greatly modify the hydraulic properties of fine roots. Yet, the physiological basis behind the restoration of fine root water uptake capacity during water recovery remains unknown. Using neutron radiography (NR), X-ray micro-computed tomography (micro-CT), fluorescence microscopy, and fine root hydraulic conductivity measurements (Lpr ), we examined how drought-induced changes in anatomy and hydraulic properties of contrasting grapevine rootstocks are coupled with fine root growth dynamics during drought and return of soil moisture. Lacunae formation in drought-stressed fine roots was associated with a significant decrease in fine root Lpr for both rootstocks. However, lacunae formation occurred under milder stress in the drought-resistant rootstock, 110R. Suberin was deposited at an earlier developmental stage in fine roots of 101-14Mgt (i.e. drought susceptible), probably limiting cortical lacunae formation during mild stress. During recovery, we found that only 110R fine roots showed rapid re-establishment of elongation and water uptake capacity and we found that soil water status surrounding root tips differed between rootstocks as imaged with NR. These data suggest that drought resistance in grapevine rootstocks is associated with rapid re-establishment of growth and Lpr near the root tip upon re-watering by limiting competing sites along the root cylinder.


Subject(s)
Droughts , Vitis , Meristem , Plant Roots , Water , X-Ray Microtomography
2.
Heliyon ; 6(12): e05708, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33385078

ABSTRACT

Mechanistic modeling constitutes a powerful tool to unravel complex biological phenomena. This study describes the construction of a mechanistic, dynamic model for grapevine plant growth and canopy biomass (vigor). To parametrize and validate the model, the progeny from a cross of Ramsey (Vitis champinii) × Riparia Gloire (V. riparia) was evaluated. Plants with different vigor were grown in a greenhouse during the summer of 2014 and 2015. One set of plants was grafted with Cabernet Sauvignon. Shoot growth rate (b), leaf area (LA), dry biomass, whole plant and root specific hydraulic conductance (kH and Lpr), stomatal conductance (gs), and water potential (Ψ) were measured. Partitioning indices and specific leaf area (SLA) were calculated. The model includes an empirical fit of a purported seasonal pattern of bioactive GAs based on published seasonal evolutionary levels and reference values. The model provided a good fit of the experimental data, with R = 0.85. Simulation of single trait variations defined the individual effect of each variable on vigor determination. The model predicts, with acceptable accuracy, the vigor of a young plant through the measurement of Lpr and SLA. The model also permits further understanding of the functional traits that govern vigor, and, ultimately, could be considered useful for growers, breeders and those studying climate change.

3.
New Phytol ; 218(2): 506-516, 2018 04.
Article in English | MEDLINE | ID: mdl-29460963

ABSTRACT

Water acquisition is thought to be limited to the unsuberized surface located close to root tips. However, there are recurring periods when the unsuberized surfaces are limited in woody root systems, and radial water uptake across the bark of woody roots might play an important physiological role in hydraulic functioning. Using X-ray microcomputed tomography (microCT) and hydraulic conductivity measurements (Lpr ), we examined water uptake capacity of suberized woody roots in vivo and in excised samples. Bark hydration in grapevine woody roots occurred quickly upon exposure to water (c. 4 h). Lpr measurements through the bark of woody roots showed that it is permeable to water and becomes more so upon wetting. After bark hydration, microCT analysis showed that absorbed water was utilized to remove embolism locally, where c. 20% of root xylem vessels refilled completely within 15 h. Embolism removal did not occur in control roots without water. Water uptake through the bark of woody roots probably plays an important role when unsuberized tissue is scarce/absent, and would be particularly relevant following large irrigation events or in late winter when soils are saturated, re-establishing hydraulic functionality before bud break.


Subject(s)
Plant Roots/physiology , Vitis/physiology , Water/physiology , Wood/physiology , Plant Bark/physiology , Plant Roots/cytology , Time Factors , Wood/cytology , X-Ray Microtomography
4.
J Exp Bot ; 65(1): 235-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24220654

ABSTRACT

The mechanisms regulating Ca(2+) partitioning and allocation in plants and fruit remain poorly understood. The objectives of this study were to determine Ca(2+) partitioning and allocation in tomato plants and fruit in response to whole-plant and fruit-specific abscisic acid (ABA) treatments, as well as to analyse the effect of changes in Ca(2+) partitioning and allocation on fruit susceptibility to the Ca(2+) deficiency disorder blossom-end rot (BER) under water stress conditions. Tomato plants of the cultivar Ace 55 (Vf) were grown in a greenhouse and exposed to low Ca(2+) conditions during fruit growth and development. Starting 1 day after pollination (DAP), the following treatments were initiated: (i) whole plants were sprayed weekly with deionized water (control) or (ii) with 500mg l(-1) ABA; or fruit on each plant were dipped weekly (iii) in deionized water (control) or (iv) in 500mg l(-1) ABA. At 15 DAP, BER was completely prevented by whole-plant or fruit-specific ABA treatments, whereas plants or fruit treated with water had 16-19% BER incidence. At 30 DAP, BER was prevented by the whole-plant ABA treatment, whereas fruit dipped in ABA had a 16% and water-treated plants or fruit had a 36-40% incidence of BER. The results showed that spraying the whole plant with ABA increases xylem sap flow and Ca(2+) movement into the fruit, resulting in higher fruit tissue and water-soluble apoplastic Ca(2+) concentrations that prevent BER development. Although fruit-specific ABA treatment had no effect on xylem sap flow rates or Ca(2+) movement into the fruit, it increased fruit tissue water-soluble apoplastic Ca(2+) concentrations and reduced fruit susceptibility to BER to a lesser extent.


Subject(s)
Abscisic Acid/pharmacology , Calcium/metabolism , Plant Diseases/prevention & control , Solanum lycopersicum/drug effects , Biological Transport , Calcium/analysis , Dehydration , Flowers , Fruit/drug effects , Fruit/growth & development , Fruit/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/drug effects , Plant Stems/growth & development , Plant Stems/physiology , Xylem/drug effects , Xylem/growth & development , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL