Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
bioRxiv ; 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37461447

Standard preclinical human tumor models lack a human tumor stroma. However, as stroma contributes to therapeutic resistance, the lack of human stroma may make current models less stringent for testing new therapies. To address this, using patient-derived tumor cells, patient derived cancer-associated mesenchymal stem/progenitor cells, and human endothelial cells, we created a Human Stroma-Patient Derived Xenograft (HS-PDX) tumor model. HS-PDX, compared to the standard PDX model, demonstrate greater resistance to targeted therapy and chemotherapy, and better reflect patient response to therapy. Furthermore, HS-PDX can be grown in mice with humanized bone marrow to create humanized immune stroma patient-derived xenograft (HIS-PDX) models. The HIS-PDX model contains human connective tissues, vascular and immune cell infiltrates. RNA sequencing analysis demonstrated a 94-96% correlation with primary human tumor. Using this model, we demonstrate the impact of human tumor stroma on response to CAR-T cell therapy and immune checkpoint inhibitor therapy. We show an immunosuppressive role for human tumor stroma and that this model can be used to identify immunotherapeutic combinations to overcome stromally mediated immunosuppression. Combined, our data confirm a critical role for human stoma in therapeutic response and indicate that HIS-PDX can be an important tool for preclinical drug testing. Statement of Significance: We developed a tumor model with human stromal, vascular, and immune cells. This model mirrors patient response to chemotherapy, targeted therapy, and immunotherapy, and can be used to study therapy resistance.

2.
Theranostics ; 11(8): 3540-3551, 2021.
Article En | MEDLINE | ID: mdl-33664846

Rationale: Aldehyde dehydrogenase (ALDH) enzymes are often upregulated in cancer cells and associated with therapeutic resistance. ALDH enzymes protect cells by metabolizing toxic aldehydes which can induce DNA double stand breaks (DSB). We recently identified a novel ALDH1A family inhibitor (ALDHi), 673A. We hypothesized that 673A, via inhibition of ALDH1A family members, could induce intracellular accumulation of genotoxic aldehydes to cause DSB and that ALDHi could synergize with inhibitors of the ATM and ATR, proteins which direct DSB repair. Methods: We used immunofluorescence to directly assess levels of the aldehyde 4-hydroxynonenal and comet assays to evaluate DSB. Western blot was used to evaluate activation of the DNA damage response pathways. Cell counts were performed in the presence of 673A and additional aldehydes or aldehyde scavengers. ALDH inhibition results were confirmed using ALDH1A3 CRISPR knockout. Synergy between 673A and ATM or ATR inhibitors was evaluated using the Chou-Talalay method and confirmed in vivo using cell line xenograft tumor studies. Results: The ALDHi 673A cellular accumulation of toxic aldehydes which induce DNA double strand breaks. This is exacerbated by addition of exogenous aldehydes such as vitamin-A (retinaldehyde) and ameliorated by aldehyde scavengers such as metformin and hydralazine. Importantly, ALDH1A3 knockout cells demonstrated increased sensitivity to ATM/ATR inhibitors. And, ALDHi synergized with inhibitors of ATM and ATR, master regulators of the DSB DNA damage response, both in vitro and in vivo. This synergy was evident in homologous recombination (HR) proficient cell lines. Conclusions: ALDHi can be used to induce DNA DSB in cancer cells and synergize with inhibitors the ATM/ATR pathway. Our data suggest a novel therapeutic approach to target HR proficient ovarian cancer cells.


Aldehyde Dehydrogenase 1 Family/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , DNA Damage , Enzyme Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Aldehyde Oxidoreductases/deficiency , Aldehyde Oxidoreductases/genetics , Aldehydes/metabolism , Aldehydes/toxicity , Animals , Cell Line, Tumor , DNA Breaks, Double-Stranded , Drug Synergism , Enzyme Inhibitors/administration & dosage , Female , Gene Knockout Techniques , Humans , Mice , Precision Medicine , Protein Kinase Inhibitors/administration & dosage , Xenograft Model Antitumor Assays
3.
Eur J Med Chem ; 211: 113060, 2021 Feb 05.
Article En | MEDLINE | ID: mdl-33341649

There is strong evidence that inhibition of one or more Aldehyde Dehydrogenase 1A (ALDH1A) isoforms may be beneficial in chemotherapy-resistant ovarian cancer and other tumor types. While many previous efforts have focused on development of ALDH1A1 selective inhibitors, the most deadly ovarian cancer subtype, high-grade serous (HGSOC), exhibits elevated expression of ALDH1A3. Herein, we report continued development of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in this critical tumor subtype. Optimization of the CM39 scaffold, aided by metabolite ID and several new ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular ALDH inhibition in HGSOC cell lines, and substantial improvements in microsomal stability culminating in orally bioavailable compounds. We demonstrate that two compounds 68 and 69 are able to synergize with chemotherapy in a resistant cell line and patient-derived HGSOC tumor spheroids, indicating their suitability for future in vivo proof of concept experiments.


Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/therapeutic use , Ovarian Neoplasms/drug therapy , Aldehyde Dehydrogenase/pharmacology , Female , Humans , Molecular Structure , Structure-Activity Relationship
...