Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Elife ; 132024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088265

ABSTRACT

Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.


Subject(s)
Protein Conformation , Humans , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Kinases/metabolism , Protein Kinases/chemistry , Melanoma/drug therapy , Melanoma/metabolism , AMP-Activated Protein Kinase Kinases , Cell Line, Tumor
2.
Dev Cell ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39047739

ABSTRACT

Cell competition is an evolutionarily conserved quality control process that eliminates suboptimal or potentially dangerous cells. Although differential metabolic states act as direct drivers of competition, how these are measured across tissues is not understood. Here, we demonstrate that vesicular glutamate transporter (VGlut) and autocrine glutamate signaling are required for cell competition and Myc-driven super-competition in the Drosophila epithelia. We find that the loss of glutamate-stimulated VGlut>NMDAR>CaMKII>CrebB signaling triggers loser status and cell death under competitive settings via the autocrine induction of TNF. This in turn drives TNFR>JNK activation, triggering loser cell elimination and PDK/LDH-dependent metabolic reprogramming. Inhibiting caspases or preventing loser cells from transferring lactate to their neighbors nullifies cell competition. Further, in a Drosophila model for premalignancy, Myc-overexpressing clones co-opt this signaling circuit to acquire super-competitor status. Targeting glutamate signaling converts Myc "super-competitor" clones into "losers," highlighting new therapeutic opportunities to restrict the evolution of fitter clones.

3.
Front Cardiovasc Med ; 11: 1384222, 2024.
Article in English | MEDLINE | ID: mdl-38911518

ABSTRACT

Introduction: Intravascular imaging, especially optical coherence tomography (OCT), has significantly improved percutaneous coronary intervention (PCI), yet its routine clinical application faces challenges. This case series introduces the Gentuity® High-Frequency Optical Coherence Tomography (HF-OCT), a novel device designed to enhance intracoronary imaging with a significantly faster pullback and smaller catheter size, potentially offering enhanced navigability in complex lesions. We aimed to assess the image quality of Gentuity® HF-OCT in complex vessel conditions, as well as presenting a case series to illustrate the application of the device in various clinical scenarios. Methods: In this case series, we included all patients who underwent intracoronary HF-OCT imaging at our center. The primary endpoint was image quality assessed by clear image length (CIL). Image quality was assessed in relation to (1) lesion severity assessed by minimum lumen area (MLA); (2) vessel size, differentiating between larger (diameter ≥ 4 mm) and smaller vessel segments; (3) pre- vs. post-PCI conditions, and (4) vessel tortuosity, categorized into none, moderate, and severe. Results: Twenty-four HF-OCT runs from 14 patients were included. No significant differences in CIL were observed across lesion severity terciles (p = 0.449), between small and large vessel segments [mean CIL% difference 1.3%; confidence interval (CI), -9.3 to 11.8; p = 0.802], and pre- vs. post-PCI conditions (mean CIL difference -3.9 mm; CI, -14.0 to 6.1; p = 0.373). Vessel tortuosity significantly impacted image quality, with clear reductions in CIL observed in cases of moderate (74.8; CI, 73.5 to 76.0; vs. 63.9; CI, 56.2 to 71.5; p = 0.043) and severe tortuosity (74.8; CI, 73.5 to 76.0; vs. 65.0; CI, 62.1 to 67.9; p = 0.002) compared to vessels with no tortuosity. Overall, the HF-OCT demonstrated excellent catheter deliverability and crossability, with very satisfactory image quality and no significant adverse events. Conclusion: The Gentuity® HF-OCT is a new OCT device capable of navigating both small- and large-diameter vessels, with similar image quality, but vessel tortuosity seems to have an impact on image quality. It appears to be as usable as conventional OCT for pre-PCI diagnosis and OCT-guided PCI, potentially bringing additional benefits in terms of deliverability, lesion crossover and ease of use in routine clinical practice.

4.
Nat Commun ; 15(1): 4751, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834573

ABSTRACT

Intracellular potassium (K+) homeostasis is fundamental to cell viability. In addition to channels, K+ levels are maintained by various ion transporters. One major family is the proton-driven K+ efflux transporters, which in gram-negative bacteria is important for detoxification and in plants is critical for efficient photosynthesis and growth. Despite their importance, the structure and molecular basis for K+-selectivity is poorly understood. Here, we report ~3.1 Å resolution cryo-EM structures of the Escherichia coli glutathione (GSH)-gated K+ efflux transporter KefC in complex with AMP, AMP/GSH and an ion-binding variant. KefC forms a homodimer similar to the inward-facing conformation of Na+/H+ antiporter NapA. By structural assignment of a coordinated K+ ion, MD simulations, and SSM-based electrophysiology, we demonstrate how ion-binding in KefC is adapted for binding a dehydrated K+ ion. KefC harbors C-terminal regulator of K+ conductance (RCK) domains, as present in some bacterial K+-ion channels. The domain-swapped helices in the RCK domains bind AMP and GSH and they inhibit transport by directly interacting with the ion-transporter module. Taken together, we propose that KefC is activated by detachment of the RCK domains and that ion selectivity exploits the biophysical properties likewise adapted by K+-ion-channels.


Subject(s)
Cryoelectron Microscopy , Escherichia coli Proteins , Escherichia coli , Potassium , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Glutathione/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium-Hydrogen Antiporters/metabolism , Potassium-Hydrogen Antiporters/chemistry , Potassium-Hydrogen Antiporters/genetics , Protein Domains
5.
Immunity ; 57(7): 1514-1532.e15, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38788712

ABSTRACT

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.


Subject(s)
Immunogenic Cell Death , Proteolysis , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Humans , Animals , Mice , Proteolysis/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Immunogenic Cell Death/drug effects , Necroptosis/drug effects , Necroptosis/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Immunotherapy/methods
6.
Nat Rev Cancer ; 24(5): 299-315, 2024 May.
Article in English | MEDLINE | ID: mdl-38454135

ABSTRACT

Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.


Subject(s)
Immunogenic Cell Death , Necroptosis , Neoplasms , Tumor Microenvironment , Humans , Necroptosis/immunology , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods
7.
Open Heart ; 11(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38242558
8.
Open Heart ; 11(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233043
10.
Nat Rev Mol Cell Biol ; 24(11): 835-852, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37568036

ABSTRACT

Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.


Subject(s)
Immunogenic Cell Death , Neoplasms , Humans , Cell Survival , Inflammation , Signal Transduction , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , Tumor Microenvironment
11.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37494451

ABSTRACT

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Subject(s)
Apoptosis , Virus Diseases , Animals , Mice , Caspase 8/genetics , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Open Heart ; 9(2)2022 10.
Article in English | MEDLINE | ID: mdl-36539292

ABSTRACT

AIM: Percutaneous coronary interventions require an arterial approach and administration of antithrombotic drugs. This may lead to bleeding complications. The aim of this study was to test whether "The Secret" - a pagan prayer - is effective in reducing post-interventional bleeding. DESIGN: Randomised controlled trial. SETTING: Monocentric, tertiary care centre. PARTICIPANTS: From January to July 2022, 200 patients (aged >18 years) undergoing elective coronary angiography were included in the study. INTERVENTION: The intervention group received "The Secret" in addition to the normal procedure. The control group was treated according to standard practice. MAIN OUTCOME MEASURES: The primary outcome was the rate of in-hospital bleeding according to the Bleeding Academic Research Consortium (BARC) consensus definition. RESULTS: The rate of bleeding was similar in both groups ("The Secret" group vs control group) with 16% versus 14% (p=0.69) of BARC 1, 12% versus 13% (p=0.81) of BARC 2, and 0% versus 0% of BARC 3 and 5 (p=1.00). Most (76%) of the participants believed that "The Secret" would be efficient in preventing bleeding. CONCLUSIONS: This study demonstrates no effect on bleeding after percutaneous coronary procedures. A large majority of our study population believe that "The Secret" can have a positive effect on their hospital care.


Subject(s)
Hemorrhage , Percutaneous Coronary Intervention , Humans , Hemorrhage/etiology , Hemorrhage/prevention & control , Hemorrhage/epidemiology , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Medicine, Traditional
13.
J Clin Med ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36556075

ABSTRACT

BACKGROUND: Considering the global burden of cardiovascular disease, we analysed trends in interventional coronary and structural procedures over the past 16 years (2005-2021), using continuous data from the Swiss national registry. METHODS: Based on a standardised questionnaire, data on coronary and structural interventions in Switzerland were assessed by the Working Group Interventional Cardiology of the Swiss Society of Cardiology (SSC). Here, we analysed the trend of annually performed interventions from 2005 to 2021 in Switzerland and the impact of the COVID-19 pandemic. RESULTS: We observed a constant increase in the total number of cases (including coronary angiographies (CA) and percutaneous coronary interventions (PCI)) from 36,436 cases in 2005 to 56,555 cases in 2021 (+55%). With 18 cases in 2007, TAVI procedures have increased to 2004 cases in 2021. During the early phase of the COVID-19 pandemic in 2020, a slight decrease in CAs and PCIs of 9.15% was observed. In contrast, we did not observe an impact of the COVID-19 pandemic on the number of no TAVI procedures. Most importantly, all cause in-hospital mortality for coronary interventions before and during the peak of the COVID-19 pandemic was comparable (1.4% vs. 1.3%). CONCLUSION: Over a 16-year period, we observed an upward trend in diagnostic and therapeutic procedures for coronary as well as structural heart disease, with only a small short-term impact of the COVID-19 pandemic on interventions and a similar procedure-related in-hospital-mortality in Switzerland.

14.
Nat Commun ; 13(1): 6383, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289233

ABSTRACT

The strict exchange of protons for sodium ions across cell membranes by Na+/H+ exchangers is a fundamental mechanism for cell homeostasis. At active pH, Na+/H+ exchange can be modelled as competition between H+ and Na+ to an ion-binding site, harbouring either one or two aspartic-acid residues. Nevertheless, extensive analysis on the model Na+/H+ antiporter NhaA from Escherichia coli, has shown that residues on the cytoplasmic surface, termed the pH sensor, shifts the pH at which NhaA becomes active. It was unclear how to incorporate the pH senor model into an alternating-access mechanism based on the NhaA structure at inactive pH 4. Here, we report the crystal structure of NhaA at active pH 6.5, and to an improved resolution of 2.2 Å. We show that at pH 6.5, residues in the pH sensor rearrange to form new salt-bridge interactions involving key histidine residues that widen the inward-facing cavity. What we now refer to as a pH gate, triggers a conformational change that enables water and Na+ to access the ion-binding site, as supported by molecular dynamics (MD) simulations. Our work highlights a unique, channel-like switch prior to substrate translocation in a secondary-active transporter.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Protons , Antiporters/metabolism , Histidine/metabolism , Hydrogen-Ion Concentration , Escherichia coli/metabolism , Sodium-Hydrogen Exchangers/metabolism , Ions/metabolism , Sodium/metabolism , Water/metabolism
15.
Proc Natl Acad Sci U S A ; 119(40): e2117175119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36179048

ABSTRACT

Protein-protein interactions (PPIs) represent the main mode of the proteome organization in the cell. In the last decade, several large-scale representations of PPI networks have captured generic aspects of the functional organization of network components but mostly lack the context of cellular states. However, the generation of context-dependent PPI networks is essential for structural and systems-level modeling of biological processes-a goal that remains an unsolved challenge. Here we describe an experimental/computational strategy to achieve a modeling of PPIs that considers contextual information. This strategy defines the composition, stoichiometry, temporal organization, and cellular requirements for the formation of target assemblies. We used this approach to generate an integrated model of the formation principles and architecture of a large signalosome, the TNF-receptor signaling complex (TNF-RSC). Overall, we show that the integration of systems- and structure-level information provides a generic, largely unexplored link between the modular proteome and cellular function.


Subject(s)
Biological Phenomena , Proteomics , Protein Interaction Mapping , Protein Interaction Maps/physiology , Proteome/metabolism
16.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35723257

ABSTRACT

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Subject(s)
Endothelial Cells , Transcription Factors , Animals , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Neovascularization, Physiologic/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/metabolism
17.
Dev Cell ; 57(11): 1316-1330.e7, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35597240

ABSTRACT

The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.


Subject(s)
Dynamins/metabolism , Mitophagy , Animals , Apoptosis/physiology , Mammals/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Mitophagy/physiology
18.
Cell Rep ; 38(4): 110286, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35081354

ABSTRACT

Selective autophagy is a catabolic route that turns over specific cellular material for degradation by lysosomes, and whose role in the regulation of innate immunity is largely unexplored. Here, we show that the apical kinase of the Drosophila immune deficiency (IMD) pathway Tak1, as well as its co-activator Tab2, are both selective autophagy substrates that interact with the autophagy protein Atg8a. We also present a role for the Atg8a-interacting protein Sh3px1 in the downregulation of the IMD pathway, by facilitating targeting of the Tak1/Tab2 complex to the autophagy platform through its interaction with Tab2. Our findings show the Tak1/Tab2/Sh3px1 interactions with Atg8a mediate the removal of the Tak1/Tab2 signaling complex by selective autophagy. This in turn prevents constitutive activation of the IMD pathway in Drosophila. This study provides mechanistic insight on the regulation of innate immune responses by selective autophagy.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Autophagy/immunology , Drosophila Proteins/immunology , Immunity, Innate/physiology , Intracellular Signaling Peptides and Proteins/immunology , MAP Kinase Kinase Kinases/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Signal Transduction/immunology
19.
Cell Death Differ ; 29(1): 28-39, 2022 01.
Article in English | MEDLINE | ID: mdl-34262145

ABSTRACT

The Drosophila IAP protein, Diap2, is a key mediator of NF-κB signalling and innate immune responses. Diap2 is required for both local immune activation, taking place in the epithelial cells of the gut and trachea, and for mounting systemic immune responses in the cells of the fat body. We have found that transgenic expression of Diap2 leads to a spontaneous induction of NF-κB target genes, inducing chronic inflammation in the Drosophila midgut, but not in the fat body. Drice is a Drosophila effector caspase known to interact and form a stable complex with Diap2. We have found that this complex formation induces its subsequent degradation, thereby regulating the amount of Diap2 driving NF-κB signalling in the intestine. Concordantly, loss of Drice activity leads to accumulation of Diap2 and to chronic intestinal inflammation. Interestingly, Drice does not interfere with pathogen-induced signalling, suggesting that it protects from immune responses induced by resident microbes. Accordingly, no inflammation was detected in transgenic Diap2 flies and Drice-mutant flies reared in axenic conditions. Hence, we show that Drice, by restraining Diap2, halts unwanted inflammatory signalling in the intestine.


Subject(s)
Drosophila Proteins/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Signal Transduction , Animals , Drosophila/metabolism , Drosophila Proteins/genetics , Immunity, Innate , Inflammation
20.
Nat Commun ; 12(1): 3364, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099649

ABSTRACT

Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL. The K219R MLKL mutation protects animals from necroptosis-induced skin damage and renders cells resistant to pathogen-induced necroptosis. Mechanistically, we show that ubiquitylation of MLKL at K219 is required for higher-order assembly of MLKL at membranes, facilitating its rupture and necroptosis. We demonstrate that K219 ubiquitylation licenses MLKL activity to induce lytic cell death, suggesting that necroptotic clearance of pathogens as well as MLKL-dependent pathologies are influenced by the ubiquitin-signalling system.


Subject(s)
Herpesviridae Infections/metabolism , Lysine/metabolism , Protein Kinases/metabolism , Skin/metabolism , Animals , Cell Line , Cells, Cultured , HEK293 Cells , HT29 Cells , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Humans , Lysine/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/physiology , NIH 3T3 Cells , Necroptosis/genetics , Necrosis , Protein Kinases/genetics , Skin/pathology , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL