Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Obes (Lond) ; 41(12): 1815-1823, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28736440

ABSTRACT

BACKGROUND/OBJECTIVES: Replication initiator 1 (Repin1) gene encodes for a zinc-finger protein and has been implicated in the regulation of adipocyte cell size and glucose transport in vitro. Here, we investigate the consequences of reduced adipose tissue (AT) Repin1 expression in vivo. SUBJECTS/METHODS: We have inactivated the Repin1 gene in adipose tissue (iARep-/-) at an age of 4 weeks using tamoxifen-inducible gene targeting strategies on the background of C57BL/6NTac mice. Furthermore, we differentiated human primary adipocytes derived from subcutaneous AT in vitro and knocked down REPIN1 using siRNA technique to measure glycerol release. RESULTS: Conditional Repin1 inactivation results in decreased AT mass, smaller adipocytes in both, subcutaneous and epigonadal AT compared to controls. Compared to controls, iARep-/- mice were more insulin sensitive, had better glucose tolerance and lower LDL-, HDL- and total cholesterol. Significantly lower AT expression of the Repin1 target genes Cd36 and Lcn2 may contribute to the phenotype of iARep-/- mice. Knockdown of REPIN1 in human in vitro differentiated adipocytes revealed an increased glycerol release. CONCLUSIONS: In conclusion, deficiency of Repin1 in AT causes alterations in AT morphology and function, which may underlay lower body weight and improved parameters of insulin sensitivity, glucose and lipid metabolism.


Subject(s)
Adipose Tissue/metabolism , DNA-Binding Proteins/deficiency , Insulin Resistance/physiology , Lipid Metabolism/physiology , Liver/metabolism , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Regulation , Gene Knockdown Techniques , Insulin Resistance/genetics , Lipid Metabolism/genetics , Mice , Mice, Knockout , RNA-Binding Proteins
2.
Diabetes Metab ; 41(6): 509-12, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25791133

ABSTRACT

AIM: Recently, in both human and murine white adipose tissue (WAT), transcription factor early B-cell factor 1 (EBF1) has been shown to regulate adipocyte differentiation, adipose morphology and triglyceride hydrolysis (lipolysis). This study investigated whether EBF1 expression and biological activity in WAT is related to different metabolic parameters. METHODS: In this cross-sectional study of abdominal subcutaneous WAT, EBF1 protein levels were examined in 18 non-obese subjects, while biological activity was determined in 56 obese and non-obese subjects. Results were assessed by anthropometric measures and blood pressure as well as by plasma lipid levels and insulin sensitivity. RESULTS: EBF1 protein levels were negatively associated with waist circumference (r=-0.56; P=0.015), but not with body mass index (BMI) or body fat (P=0.10-0.29). Biological activity of EBF1 correlated negatively with plasma triglycerides (r=-0.46; P=0.0005) and plasma insulin (r=-0.39; P=0.0027), but positively with plasma HDL cholesterol (r=0.48; P=0.0002) and insulin sensitivity, as assessed by intravenous insulin tolerance test (r=0.64; P<0.0001). These relationships, except for plasma insulin, remained statistically significant after adjusting for BMI and adipose morphology. EBF1 activity was not associated with age, systolic/diastolic blood pressure or total plasma cholesterol (P=0.17-0.48). In contrast to EBF1 activity, after adjusting for BMI, EBF1 mRNA levels displayed only an association with plasma triglycerides. CONCLUSION: Low EBF1 protein expression and activity in abdominal subcutaneous WAT is a BMI-independent marker for several traits associated with the metabolic syndrome. However, whether EBF1 constitutes a novel treatment target remains to be demonstrated.


Subject(s)
Insulin Resistance/physiology , Subcutaneous Fat/chemistry , Trans-Activators/analysis , Abdominal Fat/chemistry , Adult , Blood Pressure/physiology , Cross-Sectional Studies , Diabetes Mellitus , Humans , Lipids/blood , Middle Aged , Obesity/epidemiology , Obesity/metabolism
3.
Diabetologia ; 56(9): 2044-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23765184

ABSTRACT

AIMS/HYPOTHESIS: Obesity increases the risk of developing type 2 diabetes mellitus, characterised by impaired insulin-mediated glucose uptake in peripheral tissues. Liver X receptor (LXR) is a positive regulator of adipocyte glucose transport in murine models and a possible target for diabetes treatment. However, the levels of LXRα are increased in obese adipose tissue in humans. We aimed to investigate the transcriptome of LXR and the role of LXR in the regulation of glucose uptake in primary human adipocytes. METHODS: The insulin responsiveness of human adipocytes differentiated in vitro was characterised, adipocytes were treated with the LXR agonist GW3965 and global transcriptome profiling was determined by microarray, followed by quantitative RT-PCR (qRT-PCR), western blot and ELISA. Basal and insulin-stimulated glucose uptake was measured and the effect on plasma membrane translocation of glucose transporter 4 (GLUT4) was assayed. RESULTS: LXR activation resulted in transcriptional suppression of several insulin signalling genes, such as AKT2, SORBS1 and CAV1, but caused only minor changes (<15%) in microRNA expression. Activation of LXR impaired the plasma membrane translocation of GLUT4, but not the expression of its gene, SLC2A4. LXR activation also diminished insulin-stimulated glucose transport and lipogenesis in adipocytes obtained from overweight individuals. Furthermore, AKT2 expression was reduced in obese adipose tissue, and AKT2 and SORBS1 expression was inversely correlated with BMI and HOMA index. CONCLUSIONS/INTERPRETATION: In contrast to murine models, LXR downregulates insulin-stimulated glucose uptake in human adipocytes from overweight individuals. This could be due to suppression of Akt2, c-Cbl-associated protein and caveolin-1. These findings challenge the idea of LXR as a drug target in the treatment of diabetes.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Orphan Nuclear Receptors/metabolism , Benzoates/pharmacology , Benzylamines/pharmacology , Biological Transport/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Glucose/metabolism , Humans , Liver X Receptors , Orphan Nuclear Receptors/agonists , Real-Time Polymerase Chain Reaction
4.
Diabetologia ; 56(8): 1792-801, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23666167

ABSTRACT

AIMS/HYPOTHESIS: Alterations in white adipose tissue (WAT) function, including changes in protein (adipokine) secretion and extracellular matrix (ECM) composition, promote an insulin-resistant state. We set out to identify novel adipokines regulated by body fat mass in human subcutaneous WAT with potential roles in adipose function. METHODS: Adipose transcriptome data and secretome profiles from conditions with increased/decreased WAT mass were combined. WAT donors were predominantly women. In vitro effects were assessed using recombinant protein. Results were confirmed by quantitative PCR/ELISA, metabolic assays and immunochemistry in human WAT and adipocytes. RESULTS: We identified a hitherto uncharacterised adipokine, semaphorin 3C (SEMA3C), the expression of which correlated significantly with body weight, insulin resistance (HOMA of insulin resistance [HOMAIR], and the rate constant for the insulin tolerance test [KITT]) and adipose tissue morphology (hypertrophy vs hyperplasia). SEMA3C was primarily found in mature adipocytes and had no direct effect on human adipocyte differentiation, lipolysis, glucose transport or the expression of ß-oxidation genes. This could in part be explained by the significant downregulation of its cognate receptors during adipogenesis. In contrast, in pre-adipocytes, SEMA3C increased the production/secretion of several ECM components (fibronectin, elastin and collagen I) and matricellular factors (connective tissue growth factor, IL6 and transforming growth factor-ß1). Furthermore, the expression of SEMA3C in human WAT correlated positively with the degree of fibrosis in WAT. CONCLUSIONS/INTERPRETATION: SEMA3C is a novel adipokine regulated by weight changes. The correlation with WAT hypertrophy and fibrosis in vivo, as well as its effects on ECM production in human pre-adipocytes in vitro, together suggest that SEMA3C constitutes an adipocyte-derived paracrine signal that influences ECM composition and may play a pathophysiological role in human WAT.


Subject(s)
Adipokines/metabolism , Extracellular Matrix/metabolism , Semaphorins/metabolism , Adipokines/genetics , Adipose Tissue, White/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Microscopy, Confocal , Semaphorins/genetics
5.
Br J Cancer ; 102(10): 1541-8, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20407445

ABSTRACT

BACKGROUND: The regulatory gene pathways that accompany loss of adipose tissue in cancer cachexia are unknown and were explored using pangenomic transcriptome profiling. METHODS: Global gene expression profiles of abdominal subcutaneous adipose tissue were studied in gastrointestinal cancer patients with (n=13) or without (n=14) cachexia. RESULTS: Cachexia was accompanied by preferential loss of adipose tissue and decreased fat cell volume, but not number. Adipose tissue pathways regulating energy turnover were upregulated, whereas genes in pathways related to cell and tissue structure (cellular adhesion, extracellular matrix and actin cytoskeleton) were downregulated in cachectic patients. Transcriptional response elements for hepatic nuclear factor-4 (HNF4) were overrepresented in the promoters of extracellular matrix and adhesion molecule genes, and adipose HNF4 mRNA was downregulated in cachexia. CONCLUSIONS: Cancer cachexia is characterised by preferential loss of adipose tissue; muscle mass is less affected. Loss of adipose tissue is secondary to a decrease in adipocyte lipid content and associates with changes in the expression of genes that regulate energy turnover, cytoskeleton and extracellular matrix, which suggest high tissue remodelling. Changes in gene expression in cachexia are reciprocal to those observed in obesity, suggesting that regulation of fat mass at least partly corresponds to two sides of the same coin.


Subject(s)
Adipose Tissue/metabolism , Cachexia/genetics , Neoplasms/genetics , Signal Transduction/genetics , Weight Loss/genetics , Aged , Cachexia/etiology , Female , Gene Expression , Gene Expression Profiling , Gene Expression Regulation/genetics , Humans , Male , Neoplasms/complications , Neoplasms/metabolism , Obesity/genetics , Obesity/metabolism , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL