Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Pharmaceutics ; 16(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543243

ABSTRACT

Understanding the features of compounds that determine their high serotonergic activity and selectivity for specific receptor subtypes represents a pivotal challenge in drug discovery, directly impacting the ability to minimize adverse events while maximizing therapeutic efficacy. Up to now, this process has been a puzzle and limited to a few serotonergic targets. One approach represented in the literature focuses on receptor structure whereas in this study, we followed another strategy by creating AI-based models capable of predicting serotonergic activity and selectivity based on ligands' representation by molecular descriptors. Predictive models were developed using Automated Machine Learning provided by Mljar and later analyzed through the SHAP importance analysis, which allowed us to clarify the relationship between descriptors and the effect on activity and what features determine selective affinity for serotonin receptors. Through the experiments, it was possible to highlight the most important features of ligands based on highly efficient models. These features are discussed in this manuscript. The models are available in the additional modules of the SerotoninAI application called "Serotonergic activity" and "Selectivity".

2.
J Chem Inf Model ; 64(7): 2150-2157, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38289046

ABSTRACT

SerotoninAI is an innovative web application for scientific purposes focused on the serotonergic system. By leveraging SerotoninAI, researchers can assess the affinity (pKi value) of a molecule to all main serotonin receptors and serotonin transporters based on molecule structure introduced as SMILES. Additionally, the application provides essential insights into critical attributes of potential drugs such as blood-brain barrier penetration and human intestinal absorption. The complexity of the serotonergic system demands advanced tools for accurate predictions, which is a fundamental requirement in drug development. SerotoninAI addresses this need by providing an intuitive user interface that generates predictions of pKi values for the main serotonergic targets. The application is freely available on the Internet at https://serotoninai.streamlit.app/, implemented in Streamlit with all major web browsers supported. Currently, to the best of our knowledge, there is no tool that allows users to access affinity predictions for serotonergic targets without registration or financial obligations. SerotoninAI significantly increases the scope of drug development activities worldwide. The source code of the application is available at https://github.com/nczub/SerotoninAI_streamlit.


Subject(s)
Artificial Intelligence , Software , Humans , Web Browser , Drug Discovery , Internet
3.
Pharm Res ; 40(12): 2947-2962, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37726407

ABSTRACT

PURPOSE: Orodispersible tablets (orally disintegrating tablets, ODTs) have been used in pharmacotherapy for over 20 years since they overcome the problems with swallowing solid dosage forms. The successful formula manufactured by direct compression shall ensure acceptable mechanical strength and short disintegration time. Our research aimed to develop ODTs containing bromhexine hydrochloride suitable for registration in accordance with EMA requirements. METHODS: We examined the performance of five multifunctional co-processed excipients, i.e., F-Melt® C, F-Melt® M, Ludiflash®, Pharmaburst® 500 and Prosolv® ODT G2 as well as self-prepared physical blend of directly compressible excipients. We tested powder flow, true density, compaction characteristics and tableting speed sensitivity. RESULTS: The manufacturability studies confirmed that all the co-processed excipients are very effective as the ODT formula constituents. We noticed superior properties of both F-Melt's®, expressed by good mechanical strength of tablets and short disintegration time. Ludiflash® showed excellent performance due to low works of plastic deformation, elastic recovery and ejection. However, the tablets released less than 30% of the drug. Also, the self-prepared blend of excipients was found sufficient for ODT application and successfully transferred to production scale. Outcome of the scale-up trial revealed that the tablets complied with compendial requirements for orodispersible tablets. CONCLUSIONS: We proved that the active ingredient cannot be absorbed in oral cavity and its dissolution profiles in media representing upper part of gastrointestinal tract are similar to marketed immediate release drug product. In our opinion, the developed formula is suitable for registration within the well-established use procedure without necessity of bioequivalence testing.


Subject(s)
Excipients , Drug Compounding/methods , Administration, Oral , Solubility , Tablets
4.
Mol Inform ; 42(7): e2200214, 2023 07.
Article in English | MEDLINE | ID: mdl-37193653

ABSTRACT

Asthma and COPD are characterized by complex pathophysiology associated with chronic inflammation, bronchoconstriction, and bronchial hyperresponsiveness resulting in airway remodeling. A possible comprehensive solution that could fully counteract the pathological processes of both diseases are rationally designed multi-target-directed ligands (MTDLs), combining PDE4B and PDE8A inhibition with TRPA1 blockade. The aim of the study was to develop AutoML models to search for novel MTDL chemotypes blocking PDE4B, PDE8A, and TRPA1. Regression models were developed for each of the biological targets using "mljar-supervised". On their basis, virtual screenings of commercially available compounds derived from the ZINC15 database were performed. A common group of compounds placed within the top results was selected as potential novel chemotypes of multifunctional ligands. This study represents the first attempt to discover the potential MTDLs inhibiting three biological targets. The obtained results prove the usefulness of AutoML methodology in the identification of hits from the big compound databases.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Ligands , Asthma/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , TRPA1 Cation Channel , Cyclic Nucleotide Phosphodiesterases, Type 4 , 3',5'-Cyclic-AMP Phosphodiesterases
5.
Mol Pharm ; 20(5): 2545-2555, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37070956

ABSTRACT

Oral medicines represent the largest pharmaceutical market area. To achieve a therapeutic effect, a drug must penetrate the intestinal walls, the main absorption site for orally delivered active pharmaceutical ingredients (APIs). Indeed, predicting drug absorption can facilitate candidate screening and reduce time to market. Algorithms are available with good prediction accuracy that however focus only on solubility. In this work, we focused on drug permeability looking at human intestinal absorption as a marker for intestinal bioavailability. Being of considerable therapeutic relevance, APIs with serotonergic activity were selected as a dataset. Due to process complexity, experimental data scarcity, and variability, we turned toward an artificial intelligence (AI)-based system, which is a hierarchical combination of classification and regression models. This combination of seemingly two models into a single system widens the space of molecules classified as highly permeable with high accuracy. The specialized and optimized system enables in silico and structure-based prediction with a high degree of certainty. Predictions in external validation allowed correct selection of the 38% of highly permeable molecules without any false positives. The proposed system based on AI represents a promising tool useful for oral drug screening at an early stage of drug discovery and development. Datasets and the obtained models are available on the GitHub platform (https://github.com/nczub/HIA_5-HT).


Subject(s)
Artificial Intelligence , Quantitative Structure-Activity Relationship , Humans , Biological Availability , Intestinal Absorption , Pharmaceutical Preparations , Models, Biological
6.
Pharmaceutics ; 14(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36297478

ABSTRACT

Since their introduction to pharmacotherapy, proton pump inhibitors (PPIs) have been widely used in the treatment of numerous diseases manifested by excessive secretion of gastric acid. Despite that, there are still unmet needs regarding their availability for patients of all age groups. Their poor stability hinders the development of formulations in which dose can be easily adjusted. The aim of this review is to describe the discovery and development of PPIs, discuss formulation issues, and present the contemporary solutions, possibilities, and challenges in formulation development. The review outlines the physicochemical characteristics of PPIs, connects them with pharmacokinetic and pharmacodynamic properties, and describes the stability of PPIs, including the identification of the most important factors affecting them. Moreover, the possibilities for qualitative and quantitative analysis of PPIs are briefly depicted. This review also characterizes commercial preparations with PPIs available in the US and EU. The major part of the review is focused on the presentation of the state of the art in the development of novel formulations with PPIs covering various approaches employed in this process: nanoparticles, microparticles, minitablets, pellets, bilayer, floating, and mucoadhesive tablets, as well as parenteral, transdermal, and rectal preparations. It also anticipates further possibilities in the development of PPIs dosage forms. It is especially addressed to the researchers developing new formulations containing PPIs, since it covers the most important formulary issues that need to be considered before a decision on the selection of the formula is made. It may help in avoiding unnecessary efforts in this process and choosing the best approach. The review also presents an up-to-date database of publications focused on the pharmaceutical technology of formulations with PPIs.

7.
Pharmaceutics ; 14(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35890310

ABSTRACT

The drug discovery and development process requires a lot of time, financial, and workforce resources. Any reduction in these burdens might benefit all stakeholders in the healthcare domain, including patients, government, and companies. One of the critical stages in drug discovery is a selection of molecular structures with a strong affinity to a particular molecular target. The possible solution is the development of predictive models and their application in the screening process, but due to the complexity of the problem, simple and statistical models might not be sufficient for practical application. The manuscript presents the best-in-class predictive model for the serotonin 1A receptor affinity and its validation according to the Organization for Economic Co-operation and Development guidelines for regulatory purposes. The model was developed based on a database with close to 9500 molecules by using an automatic machine learning tool (AutoML). The model selection was conducted based on the Akaike information criterion value and 10-fold cross-validation routine, and later good predictive ability was confirmed with an additional external validation dataset with over 700 molecules. Moreover, the multi-start technique was applied to test if an automatic model development procedure results in reliable results.

8.
Pharmaceutics ; 14(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35456677

ABSTRACT

Additive technologies have undoubtedly become one of the most intensively developing manufacturing methods in recent years. Among the numerous applications, the interest in 3D printing also includes its application in pharmacy for production of small batches of personalized drugs. For this reason, we conducted multi-stage pre-formulation studies to optimize the process of manufacturing solid dosage forms by photopolymerization with visible light. Based on tests planned and executed according to the design of the experiment (DoE), we selected the optimal quantitative composition of photocurable resin made of PEG 400, PEGDA MW 575, water, and riboflavin, a non-toxic photoinitiator. In subsequent stages, we adjusted the printer set-up and process parameters. Moreover, we assessed the influence of the co-initiators ascorbic acid or triethanolamine on the resin's polymerization process. Next, based on an optimized formulation, we printed and analyzed drug-loaded tablets containing mebeverine hydrochloride, characterized by a gradual release of active pharmaceutical ingredient (API), reaching 80% after 6 h. We proved the possibility of reusing the drug-loaded resin that was not hardened during printing and determined the linear correlation between the volume of the designed tablets and the amount of API, confirming the possibility of printing personalized modified-release tablets.

9.
Pharmaceutics ; 14(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35456693

ABSTRACT

Tablets are the most common dosage form of pharmaceutical products. While tablets represent the majority of marketed pharmaceutical products, there remain a significant number of patients who find it difficult to swallow conventional tablets. Such difficulties lead to reduced patient compliance. Orally disintegrating tablets (ODT), sometimes called oral dispersible tablets, are the dosage form of choice for patients with swallowing difficulties. ODTs are defined as a solid dosage form for rapid disintegration prior to swallowing. The disintegration time, therefore, is one of the most important and optimizable critical quality attributes (CQAs) for ODTs. Current strategies to optimize ODT disintegration times are based on a conventional trial-and-error method whereby a small number of samples are used as proxies for the compliance of whole batches. We present an alternative machine learning approach to optimize the disintegration time based on a wide variety of machine learning (ML) models through the H2O AutoML platform. ML models are presented with inputs from a database originally presented by Han et al., which was enhanced and curated to include chemical descriptors representing active pharmaceutical ingredient (API) characteristics. A deep learning model with a 10-fold cross-validation NRMSE of 8.1% and an R2 of 0.84 was obtained. The critical parameters influencing the disintegration of the directly compressed ODTs were ascertained using the SHAP method to explain ML model predictions. A reusable, open-source tool, the ODT calculator, is now available at Heroku platform.

10.
Pharmaceutics ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684004

ABSTRACT

Introduction of a new drug to the market is a challenging and resource-consuming process. Predictive models developed with the use of artificial intelligence could be the solution to the growing need for an efficient tool which brings practical and knowledge benefits, but requires a large amount of high-quality data. The aim of our project was to develop quantitative structure-activity relationship (QSAR) model predicting serotonergic activity toward the 5-HT1A receptor on the basis of a created database. The dataset was obtained using ZINC and ChEMBL databases. It contained 9440 unique compounds, yielding the largest available database of 5-HT1A ligands with specified pKi value to date. Furthermore, the predictive model was developed using automated machine learning (AutoML) methods. According to the 10-fold cross-validation (10-CV) testing procedure, the root-mean-squared error (RMSE) was 0.5437, and the coefficient of determination (R2) was 0.74. Moreover, the Shapley Additive Explanations method (SHAP) was applied to assess a more in-depth understanding of the influence of variables on the model's predictions. According to to the problem definition, the developed model can efficiently predict the affinity value for new molecules toward the 5-HT1A receptor on the basis of their structure encoded in the form of molecular descriptors. Usage of this model in screening processes can significantly improve the process of discovery of new drugs in the field of mental diseases and anticancer therapy.

11.
AAPS PharmSciTech ; 21(3): 111, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32236750

ABSTRACT

Low solubility of active pharmaceutical compounds (APIs) remains an important challenge in dosage form development process. In the manuscript, empirical models were developed and analyzed in order to predict dissolution of bicalutamide (BCL) from solid dispersion with various carriers. BCL was chosen as an example of a poor water-soluble API. Two separate datasets were created: one from literature data and another based on in-house experimental data. Computational experiments were conducted using artificial intelligence tools based on machine learning (AI/ML) with a plethora of techniques including artificial neural networks, decision trees, rule-based systems, and evolutionary computations. The latter resulting in classical mathematical equations provided models characterized by the lowest prediction error. In-house data turned out to be more homogeneous, as well as formulations were more extensively characterized than literature-based data. Thus, in-house data resulted in better models than literature-based data set. Among the other covariates, the best model uses for prediction of BCL dissolution profile the transmittance from IR spectrum at 1260 cm-1 wavenumber. Ab initio modeling-based in silico simulations were conducted to reveal potential BCL-excipients interaction. All crucial variables were selected automatically by AI/ML tools and resulted in reasonably simple and yet predictive models suitable for application in Quality by Design (QbD) approaches. Presented data-driven model development using AI/ML could be useful in various problems in the field of pharmaceutical technology, resulting in both predictive and investigational tools revealing new knowledge.


Subject(s)
Anilides/chemistry , Artificial Intelligence , Machine Learning , Nitriles/chemistry , Tosyl Compounds/chemistry , Powders , Solubility , Technology, Pharmaceutical
12.
J Pharmacokinet Pharmacodyn ; 45(5): 663-677, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29943290

ABSTRACT

The physiologically based pharmacokinetic (PBPK) models allow for predictive assessment of variability in population of interest. One of the future application of PBPK modeling is in the field of precision dosing and personalized medicine. The aim of the study was to develop PBPK model for amitriptyline given orally, predict the variability of cardiac concentrations of amitriptyline and its main metabolite-nortriptyline in populations as well as individuals, and simulate the influence of those xenobiotics in therapeutic and supratherapeutic concentrations on human electrophysiology. The cardiac effect with regard to QT and RR interval lengths was assessed. The Emax model to describe the relationship between amitriptyline concentration and heart rate (RR) length was proposed. The developed PBPK model was used to mimic 29 clinical trials and 19 cases of amitriptyline intoxication. Three clinical trials and 18 cases were simulated with the use of PBPK-QSTS approach, confirming lack of cardiotoxic effect of amitriptyline in therapeutic doses and the increase in heart rate along with potential for arrhythmia development in case of amitriptyline overdose. The results of our study support the validity and feasibility of the PBPK-QSTS modeling development for personalized medicine.


Subject(s)
Amitriptyline/adverse effects , Amitriptyline/pharmacokinetics , Heart/drug effects , Adolescent , Adult , Aged , Arrhythmias, Cardiac/chemically induced , Electrophysiology/methods , Female , Heart Rate/drug effects , Humans , Male , Middle Aged , Models, Biological , Pharmacokinetics , Precision Medicine/methods , Xenobiotics/adverse effects , Xenobiotics/pharmacology , Young Adult
13.
Comput Math Methods Med ; 2018: 3719703, 2018.
Article in English | MEDLINE | ID: mdl-29531576

ABSTRACT

Human heart electrophysiology is complex biological phenomenon, which is indirectly assessed by the measured ECG signal. ECG trace is further analyzed to derive interpretable surrogates including QT interval, QRS complex, PR interval, and T wave morphology. QT interval and its modification are the most commonly used surrogates of the drug triggered arrhythmia, but it is known that the QT interval itself is determined by other nondrug related parameters, physiological and pathological. In the current study, we used the computational intelligence algorithms to analyze correlations between various simulated physiological parameters and QT interval. Terfenadine given concomitantly with 8 enzymatic inhibitors was used as an example. The equation developed with the use of genetic programming technique leads to general reasoning about the changes in the prolonged QT. For small changes of the QT interval, the drug-related IKr and ICa currents inhibition potentials have major impact. The physiological parameters such as body surface area, potassium, sodium, and calcium ions concentrations are negligible. The influence of the physiological variables increases gradually with the more pronounced changes in QT. As the significant QT prolongation is associated with the drugs triggered arrhythmia risk, analysis of the role of physiological parameters influencing ECG seems to be advisable.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Artificial Intelligence , Electrocardiography , Heart/drug effects , Myocytes, Cardiac/drug effects , Algorithms , Calcium/chemistry , Cell Membrane/metabolism , Clinical Trials as Topic , Electrophysiology , Humans , Ions , Models, Statistical , Myocytes, Cardiac/cytology , Observer Variation , Potassium/chemistry , Programming Languages , Regression Analysis , Reproducibility of Results , Risk , Sodium/chemistry , Software , Terfenadine/administration & dosage , Terfenadine/adverse effects
14.
J Pharm Sci ; 107(4): 1167-1177, 2018 04.
Article in English | MEDLINE | ID: mdl-29175411

ABSTRACT

Modern model-based approaches to cardiac safety and efficacy assessment require accurate drug concentration-effect relationship establishment. Thus, knowledge of the active concentration of drugs in heart tissue is desirable along with inter-subject variability influence estimation. To that end, we developed a mechanistic physiologically based pharmacokinetic model of the heart. The models were described with literature-derived parameters and written in R, v.3.4.0. Five parameters were estimated. The model was fitted to amitriptyline and nortriptyline concentrations after an intravenous infusion of amitriptyline. The cardiac model consisted of 5 compartments representing the pericardial fluid, heart extracellular water, and epicardial intracellular, midmyocardial intracellular, and endocardial intracellular fluids. Drug cardiac metabolism, passive diffusion, active efflux, and uptake were included in the model as mechanisms involved in the drug disposition within the heart. The model accounted for inter-individual variability. The estimates of optimized parameters were within physiological ranges. The model performance was verified by simulating 5 clinical studies of amitriptyline intravenous infusion, and the simulated pharmacokinetic profiles agreed with clinical data. The results support the model feasibility. The proposed structure can be tested with the goal of improving the patient-specific model-based cardiac safety assessment and offers a framework for predicting cardiac concentrations of various xenobiotics.


Subject(s)
Amitriptyline/pharmacokinetics , Biological Variation, Population/physiology , Heart/physiology , Nortriptyline/pharmacokinetics , Humans , Models, Biological , Tissue Distribution/physiology
15.
Drug Des Devel Ther ; 11: 193-202, 2017.
Article in English | MEDLINE | ID: mdl-28138223

ABSTRACT

The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space.


Subject(s)
Artificial Intelligence , Computer Simulation , Drug Compounding , Tablets/chemistry , Neural Networks, Computer , Particle Size , Porosity , Surface Properties
16.
Drug Des Devel Ther ; 11: 241-251, 2017.
Article in English | MEDLINE | ID: mdl-28176905

ABSTRACT

Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.


Subject(s)
Artificial Intelligence , Cellulose/chemistry , Mannitol/chemistry , Particle Size , Surface Properties
17.
Comput Methods Programs Biomed ; 134: 137-47, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27480738

ABSTRACT

BACKGROUND AND OBJECTIVES: Poly(lactic-co-glycolic acid) (PLGA) has become one of the most promising in design, development, and optimization for medical applications polymers. PLGA-based multiparticulate dosage forms are usually prepared as microspheres where the size is from 5 to 100 µm, depending on the route of administration. The main objectives of the study were to develop a predictive model of mean volumetric particle size and on its basis extract knowledge of PLGA containing proteins forming behaviour. METHODS: In the present study, a model for the prediction of mean volumetric particle size developed by an rgp package of R environment is presented. Other tools like fscaret, monmlp, fugeR, MARS, SVM, kNNreg, Cubist, randomForest and piecewise linear regression are also applied during the data mining procedure. RESULTS: The feature selection provided by the fscaret package reduced the original input vector from a total of 295 input variables to 10, 16 and 19. The developed models had good predictive ability, which was confirmed by a normalized root-mean-square error (NRMSE) of 6.8 to 11.1% in 10-fold cross validation training procedure. Moreover, the best models were validated using external experimental data. The superior predictiveness had a model obtained by rgp in the form of a classical equation with a normalized root-mean-squared error (NRMSE) of 6.1%. CONCLUSIONS: A new approach is proposed for computational modelling of the mean particle size of PLGA microspheres and rules extraction from tree-based models. The feature selection leads to revealing chemical descriptor variables which are important in predicting the size of PLGA microspheres. In order to achieve better understanding in the relationships between particle size and formulation characteristics, the surface analysis method and rules extraction procedures were applied.


Subject(s)
Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Empirical Research , Machine Learning , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Support Vector Machine
18.
PLoS One ; 11(6): e0157610, 2016.
Article in English | MEDLINE | ID: mdl-27315205

ABSTRACT

Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.


Subject(s)
Drug Liberation , Lactic Acid/chemistry , Macromolecular Substances/chemistry , Microspheres , Polyglycolic Acid/chemistry , Algorithms , Artificial Intelligence , Humans , Lactic Acid/therapeutic use , Macromolecular Substances/therapeutic use , Particle Size , Polyglycolic Acid/therapeutic use , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Polymers/therapeutic use
19.
AAPS PharmSciTech ; 17(3): 735-42, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26335419

ABSTRACT

In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.


Subject(s)
Drug Liberation , Hypromellose Derivatives/chemistry , Hypromellose Derivatives/pharmacokinetics , Quetiapine Fumarate/chemistry , Quetiapine Fumarate/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Solubility , Tablets
20.
Biomed Res Int ; 2015: 328628, 2015.
Article in English | MEDLINE | ID: mdl-26120580

ABSTRACT

Different batches of atorvastatin, represented by two immediate release formulation designs, were studied using a novel dynamic dissolution apparatus, simulating stomach and small intestine. A universal dissolution method was employed which simulated the physiology of human gastrointestinal tract, including the precise chyme transit behavior and biorelevant conditions. The multicompartmental dissolution data allowed direct observation and qualitative discrimination of the differences resulting from highly pH dependent dissolution behavior of the tested batches. Further evaluation of results was performed using IVIVC/IVIVR development. While satisfactory correlation could not be achieved using a conventional deconvolution based-model, promising results were obtained through the use of a nonconventional approach exploiting the complex compartmental dissolution data.


Subject(s)
Atorvastatin/therapeutic use , Drug Liberation , Gastrointestinal Tract/drug effects , Atorvastatin/chemistry , Chemistry, Pharmaceutical , Equipment and Supplies , Gastrointestinal Tract/physiology , Humans , Intestine, Small/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...