Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Int J Surg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954665

ABSTRACT

BACKGROUND: The main aim of this study was to examine the perioperative results of reoperations and suggest novel surgical approaches. Based on a substantial number of robotic and laparoscopic nephron-sparing surgery (NSS), we aim to propose novel surgical strategies that offer practical recommendations to surgeons. METHODS: Renal cell carcinoma patients with ipsilateral recurrent tumors, without evidence of metastasis, and who underwent primary NSS at our center between 2013 and 2023 were enrolled in this study, and all received the second time surgery. We conducted an analysis to evaluate perioperative outcomes and observed trends over a decade. Additionally, based on the findings from this study, we developed our surgical strategies. RESULTS: In the past decade, our center has successfully conducted a total of 2546 surgeries for renal cell carcinoma, out of which this study includes 15 patients who met the specified criteria. For reoperation, robotic-assisted surgery was applied in 5 cases (33.3%), laparoscopic surgery in 6 cases (40%), and open surgeries in 4 cases (26.7%). While 4 (26.7%) patients underwent NSS while radical nephrectomy was performed on 11 patients (73.3%). The median operative time was 215 minutes (IQR: 135-300), and the median estimated blood loss was 50 ml (IQR: 50-100). The median length of postoperative hospitalization was 6 days (IQR: 5-9). Furthermore, there has been a yearly increase in the application of robotic-assisted NSS at our institution. CONCLUSION: Reoperation following the pNSS is a secure and effective surgical approach. We introduce novel surgical strategies for primary surgery and reoperation, which offer valuable insights to surgeons in current study.

2.
Transl Oncol ; 47: 102042, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924847

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy that is involved in tumor genesis and development. However, few studies have focused on the predictive role of the global histone modification status in ccRCC. A total of 621 patients with complete transcript information and corresponding clinical profiles were obtained from TCGA-KIRC, GSE22541, and EMTAB3267 cohorts. A total of 122 histone modification relevant pathways were derived from MSigDB, and their activation status was quantified using GSVA. Differentially expressed genes (DEGs) were identified and filtrated using univariate Cox regression analysis. The signature was built relied on the least absolute shrinkage and selection operator (LASSO) regression analysis, and evaluated from survival difference, chemotherapy response, and activated pathways. A novel nomogram was established to quantify the probability of death in different patients. Seven risky and fifty-eight protective genes were used in LASSO analysis, and six genes were used to build the histone modification gene (HiMG) signature, which showed significant independent prognostic potential in all three cohorts. The nomogram showed acceptable incremental predictions. CKS2 (p = 0.004) and PD1 (p = 0.002) expression were significantly higher in grade 3 ccRCC than in grades 1-2. CKS2 siRNA in renal cancer cells caused reductions in cellular proliferation, migration, and invasion. Patients with low HiMG may be potential responders to rapamycin, erlotinib and FH535, while AZD6482 and CHIR-99,021 may be more suitable for patients with high HiMG levels. ccRCC histone modification distribution and a clinical signature for prognosis prediction, clinical decision making, and molecular mechanism exploration, were established for risk stratification and personalized treatments.

3.
Immunotargets Ther ; 13: 111-121, 2024.
Article in English | MEDLINE | ID: mdl-38435982

ABSTRACT

Background: The specific involvement of the CD8+ T effector memory RA (TEMRA) subset in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has largely not been explored in the literature. Methods: Targeted single-cell RNA sequencing (scRNA-seq) profiles were generated from peripheral blood mononuclear cells (PBMCs) obtained from two CP/CPPS patients and two healthy controls (HCs) in our recent study. Pseudotime series algorithms were used to reveal the differentiation trajectory, CellChat analysis was used to explore the communication between individual cells, and the SCENIC program was used to identify potential transcription factors (TFs). Based on the cosine similarity, clusters of differentially expressed genes (DEGs) were considered to be further enriched in different pathways. To confirm the functional role of the critical clusters, flow cytometry was employed. Results: The results revealed the molecular landscape of these clusters, with TEMRA cells exhibiting pronounced cytokine-mediated signaling pathway enrichment. Pseudotime trajectory analysis further mapped the evolution from naïve T cells to that of TEMRA cells, elucidating the developmental pathways involved in the immune context. A significant finding from CellChat analysis was the differential expression of ligands and receptors, with CD8+ TEMRA cells showing enhanced signaling, particularly in the CP/CPPS context, compared to HCs. Flow cytometry confirmed these results, revealing a heightened proinflammatory cytokine profile in patients with chronic prostatitis-like symptoms (CP-LS), suggesting that TEMRA cells play a significant role in disease pathogenesis. TF profiling across the T-cell clusters identified key regulators of cellular identity, identifying novel therapeutic targets. Elevated TNF signaling activity in CD8+ TEMRA cells underscored the involvement of these cells in disease mechanisms. Conclusion: This study elucidates the pivotal role of the CD8+ TEMRA cell subset in CP/CPPS, which is characterized by increased TNF signaling and proinflammatory factor expression, highlighting potential biomarkers and opening new avenues for therapeutic intervention.

5.
ACS Nano ; 18(12): 9150-9159, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38477708

ABSTRACT

Realization of dendric signal processing in the human brain is of great significance for spatiotemporal neuromorphic engineering. Here, we proposed an ionic dendrite device with multichannel communication, which could realize synaptic behaviors even under an ultralow action potential of 80 mV. The device not only could simulate one-to-one information transfer of axons but also achieve a many-to-one modulation mode of dendrites. By the adjustment of two presynapses, Pavlov's dog conditioning experiment was learned successfully. Furthermore, the device also could emulate the biological synaptic competition and synaptic cooperation phenomenon through the comodulation of three presynapses, which are crucial for artificial neural network (ANN) implementation. Finally, an ANN was further constructed to realize highly efficient and anti-interference recognition of fashion patterns. By introducing the cooperative device, synaptic weight updates could be improved for higher linearity and larger dynamic regulation range in neuromorphic computing, resulting in higher recognition accuracy and efficiency. Such an artificial dendric device has great application prospects in the processing of more complex information and the construction of an ANN system with more functions.


Subject(s)
Axons , Brain , Humans , Animals , Dogs , Action Potentials , Diffusion , Engineering , Ions
6.
Nat Commun ; 15(1): 2686, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538586

ABSTRACT

With the development of wearable devices and hafnium-based ferroelectrics (FE), there is an increasing demand for high-performance flexible ferroelectric memories. However, developing ferroelectric memories that simultaneously exhibit good flexibility and significant performance has proven challenging. Here, we developed a high-performance flexible field-effect transistor (FeFET) device with a thermal budget of less than 400 °C by integrating Zr-doped HfO2 (HZO) and ultra-thin indium tin oxide (ITO). The proposed FeFET has a large memory window (MW) of 2.78 V, a high current on/off ratio (ION/IOFF) of over 108, and high endurance up to 2×107 cycles. In addition, the FeFETs under different bending conditions exhibit excellent neuromorphic properties. The device exhibits excellent bending reliability over 5×105 pulse cycles at a bending radius of 5 mm. The efficient integration of hafnium-based ferroelectric materials with promising ultrathin channel materials (ITO) offers unique opportunities to enable high-performance back-end-of-line (BEOL) compatible wearable FeFETs for edge intelligence applications.

7.
Nano Lett ; 24(6): 2018-2024, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38315050

ABSTRACT

In recent years, memristors have successfully demonstrated their significant potential in artificial neural networks (ANNs) and neuromorphic computing. Nonetheless, ANNs constructed by crossbar arrays suffer from cross-talk issues and low integration densities. Here, we propose an eight-layer three-dimensional (3D) vertical crossbar memristor with an ultrahigh rectify ratio (RR > 107) and an ultrahigh nonlinearity (>105) to overcome these limitations, which enables it to reach a >1 Tb array size without reading failure. Furthermore, the proposed 3D RRAM shows advanced endurance (>1010 cycles), retention (>104 s), and uniformity. In addition, several synaptic functions observed in the human brain were mimicked. On the basis of the advanced performance, we constructed a novel 3D ANN, whose learning efficiency and recognition accuracy were enhanced significantly compared with those of conventional single-layer ANNs. These findings hold promise for the development of highly efficient, precise, integrated, and stable VLSI neuromorphic computing systems.

8.
Nano Lett ; 24(5): 1667-1672, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38241735

ABSTRACT

Researching optoelectronic memristors capable of integrating sensory and processing functions is essential for advancing the development of efficient neuromorphic vision. Here, we experimentally demonstrated an all-optical controlled and self-rectifying optoelectronic memristor (OEM) crossbar array with the function of multilevel storage under light stimuli. The NiO/TiO2 device exhibits an ultrahigh (>104) rectifying ratio (RR) thus overcoming the presence of sneak current. The reversible conductance modulation without electric signal involvement provides a novel way to realize ultrafast information processing. The proposed OEM array realized synaptic functions observed in the human brain, including long-term potentiation (LTP), long-term depression (LTD), paired-pulse facilitation (PPF), the transition from short-term memory (STM) to long-term memory (LTM), and learning experience behaviors successfully. The authors present a novel OEM crossbar that possesses complete light-modulation capabilities, potentially advancing the future development of efficient neuromorphic vision.

10.
Mater Horiz ; 11(2): 490-498, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37966103

ABSTRACT

Emulating the human nervous system to build next-generation computing architectures is considered a promising way to solve the von Neumann bottleneck. Transistors based on ferroelectric layers are strong contenders for the basic unit of artificial neural systems due to their advantages of high speed and low power consumption. In this work, the potential of Fe-TFTs integrating the HfLaO ferroelectric film and ultra-thin ITO channel for artificial synaptic devices is demonstrated for the first time. The Fe-TFTs can respond significantly to pulses as low as 14 ns with an energy consumption of 93.1 aJ, which is at the leading level for similar devices. In addition, Fe-TFTs exhibit essential synaptic functions and achieve a recognition rate of 93.2% for handwritten digits. Notably, a novel reconfigurable approach involving the combination of two types of electrical pulses to realize Boolean logic operations ("AND", "OR") within a single Fe-TFT has been introduced for the first time. The simulations of array-level operations further demonstrated the potential for parallel computing. These multifunctional Fe-TFTs reveal new hardware options for neuromorphic computing chips.

11.
Andrology ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095276

ABSTRACT

OBJECTIVE: To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS: Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS: The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS: Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.

12.
Ann Med ; 55(2): 2279235, 2023.
Article in English | MEDLINE | ID: mdl-37939258

ABSTRACT

Tumour classifications play a pivotal role in prostate cancer (PCa) management. It can predict the clinical outcomes of PCa as early as the disease is diagnosed and then guide therapeutic schemes, such as active monitoring, standalone surgical intervention, or surgery supplemented with postoperative adjunctive therapy, thereby circumventing disease exacerbation and excessive treatment. Classifications based on clinicopathological features, such as prostate cancer-specific antigen, Gleason score, and TNM stage, are still the main risk stratification strategies and have played an essential role in standardized clinical decision-making. However, mounting evidence indicates that clinicopathological parameters in isolation fail to adequately capture the heterogeneity exhibited among distinct PCa patients, such as those sharing identical Gleason scores yet experiencing divergent prognoses. As a remedy, molecular classifications have been introduced. Currently, molecular studies have revealed the characteristic genomic alterations, epigenetic modulations, and tumour microenvironment associated with different types of PCa, which provide a chance for urologists to refine the PCa classification. In this context, numerous invaluable molecular classifications have been devised, employing disparate statistical methodologies and algorithmic approaches, encompassing self-organizing map clustering, unsupervised cluster analysis, and multifarious algorithms. Interestingly, the classifier PAM50 was used in a phase-2 multicentre open-label trial, NRG-GU-006, for further validation, which hints at the promise of molecular classification for clinical use. Consequently, this review examines the extant molecular classifications, delineates the prevailing panorama of clinically pertinent molecular signatures, and delves into eight emblematic molecular classifications, dissecting their methodological underpinnings and clinical utility.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prognosis , Prostate-Specific Antigen , Neoplasm Grading , Risk Assessment/methods , Tumor Microenvironment
13.
Mater Horiz ; 10(9): 3643-3650, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37340846

ABSTRACT

The HfO2-based ferroelectric tunnel junction has received outstanding attention owing to its high-speed and low-power characteristics. In this work, aluminum-doped HfO2 (HfAlO) ferroelectric thin films are deposited on a muscovite substrate (Mica). We investigate the bending effect on the ferroelectric characteristics of the Au/Ti/HfAlO/Pt/Ti/Mica device. After 1000 bending times, the ferroelectric properties and the fatigue characteristics are largely degraded. The finite element analysis indicates that crack formation is the main reason for the fatigue damage under threshold bending diameters. Moreover, the HfAlO-based ferroelectric synaptic device exhibits excellent performance of neuromorphic computing. The artificial synapse can mimic the paired-pulse facilitation and long-term potentiation/depression of biological synapses. Meanwhile, the accuracy of digit recognition is 88.8%. This research provides a new research idea for the further development of hafnium-based ferroelectric devices.

14.
Biochem Pharmacol ; 214: 115669, 2023 08.
Article in English | MEDLINE | ID: mdl-37364622

ABSTRACT

Prostate cancer is the most common tumor among men. Although the prognosis for early-stage prostate cancer is good, patients with advanced disease often progress to metastatic castration-resistant prostate cancer (mCRPC), which usually leads to death owing to resistance to existing treatments and lack of long-term effective therapy. In recent years, immunotherapy, especially immune checkpoint inhibitors (ICIs), has made great progress in the treatment of various solid tumors, including prostate cancer. However, the ICIs have only shown modest outcomes in mCRPC compared with other tumors. Previous studies have suggested that the suppressive tumor immune microenvironment (TIME) of prostate cancer leads to poor anti-tumor immune response and tumor resistance to immunotherapy. It has been reported that non-coding RNAs (ncRNAs) are capable of regulating upstream signaling at the transcriptional level, leading to a "cascade of changes" in downstream molecules. As a result, ncRNAs have been identified as an ideal class of molecules for cancer treatment. The discovery of ncRNAs provides a new perspective on TIME regulation in prostate cancer. ncRNAs have been associated with establishing an immunosuppressive microenvironment in prostate cancer through multiple pathways to modulate the immune escape of tumor cells which can promote resistance of prostate cancer to immunotherapy. Targeting these related ncRNAs presents an opportunity to improve the effectiveness of immunotherapy in this patient population.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/therapy , Immunotherapy , Prostate/pathology , Prognosis , Tumor Microenvironment
15.
Adv Mater ; 35(32): e2301321, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37154271

ABSTRACT

Information-processing devices are the core components of modern electronics. Integrating them into textiles is the indispensable demand for electronic textiles to form close-loop functional systems. Memristors with crossbar configuration are regarded as promising building blocks to design woven information-processing devices that seamlessly unify with textiles. However, the memristors always suffer from severe temporal and spatial variations due to the random growth of conductive filaments during filamentary switching processes. Here, inspired by the ion nanochannels across synaptic membranes, a highly reliable textile-type memristor made of Pt/CuZnS memristive fiber with aligned nanochannels, showing small set voltage variation (<5.6%) under ultralow set voltage (≈0.089 V), high on/off ratio (≈106 ), and low power consumption (0.1 nW), is reported. Experimental evidence indicate that nanochannels with abundant active S defects can anchor silver ions and confine their migrations to form orderly and efficient conductive filaments. Such memristive performances enable the resultant textile-type memristor array to have high device-to-device uniformity and process complex physiological data like brainwave signals with high recognition accuracy (95%). The textile-type memristor arrays are mechanically durable to withstand hundreds of bending and sliding deformations, and seamlessly unified with sensing, power-supplying, and displaying textiles/fibers to form all-textile integrated electronic systems for new generation human-machine interactions.

16.
Langmuir ; 39(23): 8186-8195, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37252852

ABSTRACT

Field-directed assembly has the potential to make large hierarchically ordered structures from nanoscale objects. Shear forces and optical, electric, and magnetic fields have been used for this purpose. Ferrofluids consist of magnetic nanoparticles hosted in mobile liquids. Though they exhibit rich structures and lattice patterns in response to an applied magnetic field, the patterns collapse when the field is removed. Recently, we adapted evaporation-induced self-assembly to obtain permanent encodings of the complex field response of magnetite nanoparticles in alkane media. The encodings are characterized by order that culminates in macrostructures comprising kinetically trapped spike patterns. The present work examines a number of variables that control pattern formation associated with this encoding. Control variables include applied magnetic field strength, magnetic field gradient, nanoparticle concentration, solvent evaporation conditions, and alkane solvent chain length. The pattern formation process is captured in six stages of evolution until the solvent host has evaporated and the pattern is permanently fixed. The macropatterns consist of hexagonal arrays that coexist with different pentagonal and heptagonal defects. The Voronoi entropy is calculated for different patterns that arise due to changes in the control parameters. Insight into order in the lattice patterns is achieved by extracting measurables like peak-to-peak spike wavelength, spike population, spike height, and base diameter from the patterns. The pattern measurables depend nonlinearly on the magnetic field gradient, solvent evaporation rate, and solvent chain length. Nanoparticle concentration does not impact the measurables significantly. Nonetheless, the results agree qualitatively with a linear expression for the critical magnetization and wavelength that explicitly contains the field gradient and surface tension.

17.
Adv Sci (Weinh) ; 10(17): e2206955, 2023 06.
Article in English | MEDLINE | ID: mdl-37085921

ABSTRACT

Accumulating evidence shows HOOK1 disordered in human malignancies. However, the clinicopathological and biological significance of HOOK1 in renal cell carcinoma (RCC) remains rarely studied. In this study, the authors demonstrate that HOOK1 is downregulated in RCC samples with predicted poorer clinical prognosis. Mechanistically, HOOK1 inhibits tumor growth and metastasis via canonical TGF-ß/ALK5/p-Smad3 and non-canonical TGF-ß/MEK/ERK/c-Myc pathway. At the same time, HOOK1 inhibits RCC angiogenesis and sunitinib resistance by promoting degradation of TNFSF13B through the ubiquitin-proteasome pathway. In addition, HOOK1 is transcriptionally regulated by nuclear factor E2F3 in VHL dependent manner. Notably, an agonist of HOOK1, meletin, is screened and it shows antitumor activity more effectively when combined with sunitinib or nivolumab than it is used alone. The findings reveal a pivotal role of HOOK1 in anti-cancer treatment, and identify a novel therapeutic strategy for renal cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Vascular Endothelial Growth Factor A , Sunitinib , Transforming Growth Factor beta , Kidney Neoplasms/drug therapy , B-Cell Activating Factor/therapeutic use
18.
Nano Lett ; 23(10): 4675-4682, 2023 May 24.
Article in English | MEDLINE | ID: mdl-36913490

ABSTRACT

Hafnium oxide (HfO2)-based ferroelectric tunnel junctions (FTJs) have been extensively evaluated for high-speed and low-power memory applications. Herein, we investigated the influence of Al content in HfAlO thin films on the ferroelectric characteristics of HfAlO-based FTJs. Among HfAlO devices with different Hf/Al ratios (20:1, 34:1, and 50:1), the HfAlO device with Hf/Al ratio of 34:1 exhibited the highest remanent polarization and excellent memory characteristics and, thereby, the best ferroelectricity among the investigated devices. Furthermore, first-principal analyses verified that HfAlO thin films with Hf/Al ratio of 34:1 promoted the formation of the orthorhombic phase against the paraelectric phase as well as alumina impurities and, thus, enhanced the ferroelectricity of the device, providing theoretical support for supporting experimental results. The findings of this study provide insights for developing HfAlO-based FTJs for next-generation in-memory computing applications.

20.
Cell Oncol (Dordr) ; 46(3): 745-759, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36823338

ABSTRACT

PURPOSE: With the heterogeneous genetic background, prognosis prediction and therapeutic targets for testicular germ cell tumors (TGCTs) are still unclear. We defined the tumor immune microenvironment activation status (TIMEAS). METHODS: We collected a total of 314 TGCT patients from four cohorts, including a 48-case microarray. A nonnegative matrix factorization algorithm was applied to identify the "immune factor", derived the top 150 weighted genes to divide patients into immune and non-immune classes, and further separated the immune class into activated and exhausted subgroups by nearest template prediction. Tumor mutant burden, gene mutation, and copy number alteration were compared with our recently developed package "MOVICS". A random forest algorithm was performed to establish a prediction model with fewer genes. Immunohistochemistry staining was performed to identify TIMEAS in the microarray. RESULTS: We constructed the TIMEAS in the TCGA-TGCT cohort and further validated it in the GSE3218 and GSE99420 cohorts. The immune class contained the activated status of T-lymphocytes, B-lymphocytes, and macrophages, while Treg cells and the WNT/TGFß signature were more activated in the immune-suppressed subgroup. Patients in the immune-exhausted subgroup had the worst prognosis, and 22.9% of patients in the immune-activated subgroup had KRAS mutations, which might stimulate the response of the immune system and lead to a favorable prognosis. The immune-exhausted group benefited more from chemotherapy, while the immune-activated subgroup responded well to anti-PD-1/PD-L1 therapy. FSCN1 was validated as the target of the immune-exhausted microenvironment by immunohistochemistry. CONCLUSION: TIMEAS classification can separate TGCT patients; patients in the immune-activated subgroup could benefit more from anti-PD-L1 immunotherapy, and those in the immune-exhausted subgroup are more suitable for chemotherapy.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Humans , Biomarkers, Tumor/genetics , Testicular Neoplasms/drug therapy , Immunotherapy/methods , Tumor Microenvironment , Carrier Proteins , Microfilament Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...