Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 89(5): 1308-22, 2008 May.
Article in English | MEDLINE | ID: mdl-18543624

ABSTRACT

Recruitment variation can be a major source of fluctuation in populations and communities, making it difficult to generalize results. Determining the scales of variation and whether spatial patterns in the supply of individuals are persistent over time can provide insight into spatial generality and the application of conservation and metacommunity models. We examined these issues using eight-year-long data sets of monthly recruitment of intertidal mussels (Mytilus spp., Perumytilus purpuratus, Semimytilus algosus, Brachidontes granulata) and barnacles (Balanus glandula, Chthamalus dalli, Jehlius cirratus, Notochthamalus scabrosus) at sites spanning > 900 km along the coasts of Oregon-northern California (OR-NCA, 45.47-39.43 degrees N) and central Chile (CC, 29.5-34.65 degrees S). We evaluated four general "null" hypotheses: that despite different phylogenies and great spatial separation of these taxa, their similar life history strategies and environmental settings lead to similar patterns of recruitment (1) between hemispheres, (2) in time, (3) in space, and (4) at larger and smaller spatial scales. Hypothesis 1 was rejected: along the OR-NCA coast, rates of recruitment were between two and three orders of magnitude higher, and patterns of seasonality were generally stronger and more coherent across space and time than along CC. Surprisingly, however, further analysis revealed regularities in both time and space for all species, supporting hypotheses 2 and 3. Temporal decorrelation scales were 1-3 months, and characteristic spatial scales of recruitment were approximately 250 km. Contrary to hypothesis 4, for the ecologically dominant species in both hemispheres, recruitment was remarkably persistent at larger mesoscales (kilometers) but was highly stochastic at smaller microscales (meters). Across species, increased recruitment variation at large scales was positively associated with increased persistence. Our results have several implications. Although the two regions span distinct latitudinal ranges, potential forcing processes behind these patterns include similar large-scale climates and topographically locked hydrographic features, such as upwelling. Further, spatial persistence of the recruitment patterns of most species at the mesoscale supports the view that marine protected areas can be powerful conservation and management tools. Finally, persistent and yet contrasting spatial patterns of recruitment among competing species suggest that recent metacommunity models might provide useful representations of the mechanisms involved in species coexistence.


Subject(s)
Bivalvia/physiology , Ecosystem , Thoracica/physiology , Animals , California , Chile , Oceans and Seas , Oregon , Population Dynamics , Seasons , Time Factors
2.
Am Nat ; 171(3): 405-17, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18220482

ABSTRACT

Striking differences in the dispersal of coexisting species have fascinated marine ecologists for decades. Despite widespread attention to the impact of dispersal on individual species dynamics, its role in species interactions has received comparatively little attention. Here, we approach the issue by combining analyses of simple heuristic predator-prey models with different dispersal patterns and data from several predator-prey systems from the Pacific coasts of North and South America. In agreement with model predictions, differences in predator dispersal generated characteristic biogeographic patterns. Predators lacking pelagic larvae tracked geographic variation in prey recruitment but not prey abundance. Prey recruitment rate alone explained more than 80% of the biogeographic variation in predator abundance. In contrast, predators with broadcasting larvae were uncorrelated with prey recruitment or adult prey abundance. Our findings reconcile perplexing results from previous studies and suggest that simple models can capture some of the complexity of life-history diversity in marine communities.


Subject(s)
Ecosystem , Invertebrates/physiology , Models, Biological , Seawater , Animals , Food Chain , Marine Biology , South America
SELECTION OF CITATIONS
SEARCH DETAIL