Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Bot ; 134(4): 651-664, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38824400

ABSTRACT

BACKGROUND AND AIMS: Pleistocene climatic oscillations, characterized by arid (interglacial) and pluvial (glacial) phases, have profoundly impacted the floras of Mediterranean climates. Our study investigates the hypothesis that these climatic extremes have promoted phases of range expansion and contraction in the Eriosyce sect. Neoporteria, resulting in pronounced genetic structuring and restricted gene flow. METHODS: Using nuclear microsatellite markers, we genotyped 251 individuals across 18 populations, encompassing all 14 species and one subspecies within the Eriosyce sect. Neoporteria. Additionally, species distribution models were used to reconstruct past (Last Interglacial, Last Glacial Maximum and Mid-Holocene) and current potential distribution patterns, aiming to delineate the climatic influences on species range dynamics. KEY RESULTS: The gene flow analysis disclosed disparate levels of genetic interchange among species, with marked restrictions observed between entities that are geographically or ecologically separated. Notably, Eriosyce subgibbosa from Hualpen emerged as genetically distinct, warranting its exclusion for clearer genetic clustering into north, central and south clusters. The species distribution models corroborated these findings, showing marked range expansions during warmer periods and contractions during colder times, indicating significant shifts in distribution patterns in response to climatic changes. CONCLUSIONS: Our findings emphasize the critical role of Pleistocene climatic fluctuations in driving the dynamic patterns of range expansions and contractions that have led to geographical isolation and speciation within the Eriosyce sect. Neoporteria. Even in the face of ongoing gene flow, these climate-driven processes have played a pivotal role in sculpting the genetic architecture and diversity of species. This study elucidates the complex interplay between climatic variability and evolutionary dynamics among mediterranean cacti in central Chile, highlighting the necessity of considering historical climatic millennial oscillations in conservation and evolutionary biology studies.


Subject(s)
Gene Flow , Microsatellite Repeats , Chile , Genetic Speciation , Climate Change , Genetic Variation , Climate
2.
PhytoKeys ; 237: 117-139, 2024.
Article in English | MEDLINE | ID: mdl-38292077

ABSTRACT

Chile's distinctive flora, geographical isolation, and complex topography collectively contribute to a notable endemic species diversity, particularly within central regions identified as critical areas for biodiversity conservation. The cactus genus Eriosyce, as currently circumscribed, encompasses seven sections, with Eriosycesect.Horridocatus presenting a notably complex species group. This study investigates the E.curvispina complex, a member of the Notocacteae tribe common in central Chile, by incorporating new populations and examining phylogenetic relationships using four plastid and one nuclear molecular marker. The phylogenetic analysis of sampled individuals identified nine independent lineages, each warranting recognition at the species rank. Despite minimal morphological differences among taxa, morphological characters were utilized to support and stabilize the DNA-based phylogenetic hypothesis. The results highlight the high taxonomic diversity in these cactus lineages and have implications for the classification of the E.curvispina complex, including new combinations and proposals of conservation status.


ResumenLa flora distintiva de Chile, su aislamiento geográfico y topografía compleja contribuyen colectivamente a una notable diversidad de especies endémicas, particularmente dentro de las regiones centrales identificadas como áreas críticas para la conservación de la biodiversidad. El género de cactus Eriosyce, tal como está circunscrito actualmente, abarca siete secciones, presentando Eriosycesect.Horridocatus un grupo de especies notablemente complejo. Este estudio investiga el complejo E.curvispina, un miembro de la tribu Notocacteae común en Chile central, incorporando nuevas poblaciones y examinando las relaciones filogenéticas utilizando cuatro marcadores moleculares del cloroplasto y uno nuclear. El análisis filogenético de las poblaciones muestreadas identificó nueve linajes independientes, cada uno mereciendo reconocimiento a nivel de especie. A pesar de las mínimas diferencias morfológicas entre los taxones, se utilizaron caracteres morfológicos para apoyar y estabilizar la filogenia basada en ADN. Los resultados resaltan la alta diversidad taxonómica en estos linajes de cactus y tienen implicaciones para la clasificación del complejo E.curvispina, incluyendo nuevas combinaciones y propuestas de estado de conservación.

3.
Genes (Basel) ; 13(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35205285

ABSTRACT

Unraveling the processes involved in the origin of a substantial fraction of biodiversity can be a particularly difficult task in groups of similar, and often convergent, morphologies. The genus Eriosyce (Cactaceae) might present a greater specific diversity since much of its species richness might be hidden in morphological species complexes. The aim of this study was to investigate species delimitation using the molecular data of the globose cacti "E. curvispina", which harbor several populations of unclear evolutionary relationships. We ran phylogenetic inferences on 87 taxa of Eriosyce, including nine E. curvispina populations, and by analyzing three plastid noncoding introns, one plastid and one nuclear gene. Additionally, we developed 12 new pairs of nuclear microsatellites to evaluate the population-level genetic structure. We identified four groups that originated in independent cladogenetic events occurring at different temporal depths; these groups presented high genetic diversity, and their populations were genetically structured. These results suggest a complex evolutionary history in the origin of globular cacti, with independent speciation events occurring at different time spans. This cryptic richness is underestimated in the Mediterranean flora of central Chile, and thus unique evolutionary diversity could be overlooked in conservation and management actions.


Subject(s)
Cactaceae , Biodiversity , Biological Evolution , Chile , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL