Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(19): 9031-8, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23984845

ABSTRACT

The importance of fluorescent detection in many fields is well established. While advancements in instrumentation and the development of brighter fluorophore have increased sensitivity and lowered the detection limits of the method, additional gains can be made by manipulating the local electromagnetic field. Herein we take advantage of silicon nanopillars that exhibit optical resonances and field enhancement on their surfaces and demonstrate their potential in improving performance of biomolecular fluorescent assays. We use electron beam lithography and wafer scale processes to create silicon nanoscale pillars with dimensions that can be tuned to maximize fluorescence enhancement in a particular spectral region. Performance of the nanopillar based fluorescent assay was quantified using two model bioaffinity systems (biotin-streptavidin and immunoglobulin G-antibody) as well as covalent binding of fluorescently tagged bovine serum albumin (BSA). The effects of pillar geometry and number of pillars in arrays were evaluated. Color specific and pillar diameter dependent enhancement of fluorescent signals is clearly demonstrated using green and red labels (FITC, DyLight 488, Alexa 568, and Alexa 596). The ratios of the on pillar to off pillar signals normalized by the nominal increase in surface area due to nanopillars were found to be 43, 75, and 292 for the IgG-antibody assay, streptavidin-biotin system, and covalently attached BSA, respectively. Applicability of the presented approaches to the detection of small numbers of molecules was evaluated using highly diluted labeled proteins and also control experiments without biospecific analytes. Our analysis indicates that detection of fewer than 10 tagged proteins is possible.


Subject(s)
Nanoparticles/chemistry , Silicon/chemistry , Spectrometry, Fluorescence/instrumentation , Animals , Antibodies/analysis , Biotin/analysis , Cattle , Immunoglobulin G/analysis , Serum Albumin, Bovine/analysis , Streptavidin/analysis , Surface Properties
2.
ACS Nano ; 6(4): 2948-59, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22385359

ABSTRACT

Silicon nanowire and nanopillar structures have drawn increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain analysis predicts local field intensity enhancements in the vicinity of appropriately sized and coaxially illuminated silicon nanopillars of approximately 2 orders of magnitude. While this level of enhancement is modest when compared to plasmonic systems, the unique advantage of the silicon nanopillar resonators is that they enhance optical fields in substantially larger volumes. By analyzing experimentally measured strength of the silicon Raman phonon line (500 cm(-1)), it was determined that nanopillars produced local field enhancements that are consistent with these predictions. Additionally, we demonstrate that a thin layer of Zn phthalocyanine on the nanopillar surface with a total amount of <30 attomoles produced prominent Raman spectra, yielding enhancement factors (EFs) better than 2 orders of magnitude. Finally, silicon nanopillars of cylindrical and elliptical shapes were labeled with different fluorophors and evaluated for their surface-enhanced fluorescence (SEF) capability. The EFs derived from analysis of the acquired fluorescence microscopy images indicate that silicon nanopillar structures can provide enhancements comparable or even stronger than those typically achieved using plasmonic SEF structures without the limitations of the metal-based substrates, such as fluorescence quenching and an insufficiently large probe volume. It is anticipated that dense arrays of silicon nanopillars will enable SEF assays with extremely high sensitivity, while a broader impact of the reported phenomena is anticipated in photovoltaics, subwavelength light focusing, and fundamental nanophotonics.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Silicon/chemistry , Spectrometry, Fluorescence , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...