Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
N Z Med J ; 137(1600): 66-75, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39088811

ABSTRACT

AIMS: To assess whether diabetes treatment satisfaction differs by ethnicity among participants with insufficient glycaemic control of type 2 diabetes mellitus in a clinical trial involving additional oral diabetes medications. Patient satisfaction is used as an indicator of healthcare quality. However, data on patients' diabetes treatment satisfaction in the context of insufficient glycaemic control is limited. METHODS: Individuals with type 2 diabetes and an HbA1c of 58-110mmol/mol (7.5-12.5%) were recruited across Aotearoa New Zealand to participate in an 8-month randomised crossover study of vildagliptin and pioglitazone as add-on therapy to metformin and/or sulfonylurea. Participants completed the Diabetes Treatment Satisfaction Questionnaire (DTSQ) at baseline pre-randomisation. Treatment satisfaction scores were compared between ethnic groups and other characteristics using the analysis of variance and linear regression. Perceived hyper- and hypoglycaemia were summarised separately. RESULTS: Between February 2019 and March 2020, 346 participants (41% women, 32% Pacific peoples, 23% Maori, 26% European) completed the DTSQ. Mean (SD) age was 57.5 (10.9) years, diabetes duration was 9 (6.3) years and HbA1c was 75 (12)mmol/mol (9.0[3.2]%). At study entry, 40% were receiving monotherapy for diabetes. Treatment satisfaction was rated highly, with a score of 29(6) (interquartile range 25-33). Pacific peoples and older people reported greater treatment satisfaction than other groups (p<0.001). CONCLUSIONS: Diabetes treatment satisfaction was high, particularly among Pacific peoples, despite suboptimal glycaemic control and insufficient glucose-lowering therapy.


Subject(s)
Cross-Over Studies , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Patient Satisfaction , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/ethnology , Female , New Zealand , Male , Middle Aged , Hypoglycemic Agents/therapeutic use , Aged , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Metformin/therapeutic use , Pioglitazone/therapeutic use , Sulfonylurea Compounds/therapeutic use , Drug Therapy, Combination , Surveys and Questionnaires , Ethnicity/statistics & numerical data
2.
Article in English | MEDLINE | ID: mdl-39169570

ABSTRACT

OBJECTIVES: Our objective was to prospectively investigate pre-diagnostic population-based metabolome for risk of hospitalized gout (i.e., most accurate, severe, and costly cases), accounting for serum urate. METHODS: We conducted pre-diagnostic metabolome-wide analyses among 249,677 UK Biobank participants with NMR metabolomic profiling (N=168 metabolites, including eight amino acids) from baseline blood samples (2006-2010), without a history of gout. We calculated multivariable hazard ratios (HRs) for incident hospitalized gout, before and after adjusting for serum urate levels; we included non-hospitalised incident gout cases in a sensitivity analysis. Potential causal effects were evaluated with two-sample Mendelian randomization. RESULTS: Correcting for multiple testing, 107 metabolites were associated with incidence of hospitalized gout (N=2735) before urate adjustment, including glycine and glutamine (inversely; HR=0.64 [95% CI: 0.54, 0.75], P=8.3x10-8 and HR=0.69 [0.61, 0.78], P=3.3x10-9 between extreme quintiles, respectively), and glycoprotein acetyls (GlycA; HR=2.48 [2.15, 2.87], P=1.96x10-34). Associations remained significant and directionally-consistent following urate adjustment (HR=0.83 [0.70, 0.98], 0.86 [0.76, 0.98], 1.41 [1.21, 1.63] between extreme quintiles), respectively; corresponding HR per SD were 0.91 (0.86, 0.97), 0.94 (0.91, 0.98), and 1.10 (1.06, 1.14). Findings persisted when including non-hospitalised incident gout cases. Mendelian randomization corroborated their potential causal role on hyperuricemia or gout risk; with change in urate levels of -0.05 mg/dL (-0.08, -0.01), and -0.12 mg/dL (-0.22, -0.03), per SD of glycine and glutamine, respectively, and ORs 0.94 (0.88, 1.00), and 0.81 (0.67, 0.97), for gout. CONCLUSION: These prospective findings with causal implications could lead to biomarker-based risk prediction and potential supplementation-based interventions with glycine or glutamine.

3.
Arthritis Rheumatol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118347

ABSTRACT

OBJECTIVE: Mechanisms underlying the adolescent-onset and early-onset gout are unclear. This study aimed to discover variants associated with early-onset gout. METHODS: We conducted whole-genome sequencing in a discovery adolescent-onset gout cohort of 905 individuals (gout onset 12 to 19 years) to discover common and low-frequency single-nucleotide variants (SNVs) associated with gout. Candidate common SNVs were genotyped in an early-onset gout cohort of 2,834 individuals (gout onset ≤30 years old), and meta-analysis was performed with the discovery and replication cohorts to identify loci associated with early-onset gout. Transcriptome and epigenomic analyses, quantitative real-time polymerase chain reaction and RNA sequencing in human peripheral blood leukocytes, and knock-down experiments in human THP-1 macrophage cells investigated the regulation and function of candidate gene RCOR1. RESULTS: In addition to ABCG2, a urate transporter previously linked to pediatric-onset and early-onset gout, we identified two novel loci (Pmeta < 5.0 × 10-8): rs12887440 (RCOR1) and rs35213808 (FSTL5-MIR4454). Additionally, we found associations at ABCG2 and SLC22A12 that were driven by low-frequency SNVs. SNVs in RCOR1 were linked to elevated blood leukocyte messenger RNA levels. THP-1 macrophage culture studies revealed the potential of decreased RCOR1 to suppress gouty inflammation. CONCLUSION: This is the first comprehensive genetic characterization of adolescent-onset gout. The identified risk loci of early-onset gout mediate inflammatory responsiveness to crystals that could mediate gouty arthritis. This study will contribute to risk prediction and therapeutic interventions to prevent adolescent-onset gout.

4.
Article in English | MEDLINE | ID: mdl-39137147

ABSTRACT

OBJECTIVES: The minor allele of the common rs2231142 ABCG2 variant predicts inadequate response to allopurinol urate lowering therapy. We hypothesize that additional variants in genes encoding urate transporters and allopurinol-to-oxypurinol metabolic enzymes also predict allopurinol response. METHODS: This study included a subset of participants with gout from the Long-term Allopurinol Safety Study Evaluating Outcomes in Gout Patients, whose whole genome was sequenced (n = 563). Good responders had a 4:1 or 5:1 ratio of good (serum urate (SU) <0.36 mmol/l on allopurinol ≤300 mg/day) to poor (SU ≥ 0.36 mmol/l despite allopurinol >300 mg/day) responses over 5-6 timepoints, while inadequate responders had a 1:4 or 1:5 ratio of good to poor responses. Adherence to allopurinol was determined by pill counts, and for a subgroup (n = 303), by plasma oxypurinol >20µmol/l. Using the sequence kernel association test (SKAT) we estimated the combined effect of rare and common variants in urate secretory (ABCC4, ABCC5, ABCG2, SLC17A1, SLC17A3, SLC22A6, SLC22A8) and reuptake genes (SLC2A9, SLC22A11) and in allopurinol-to-oxypurinol metabolic genes (AOX1, MOCOS, XDH) on allopurinol response. RESULTS: There was an association of rare and common variants in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.019), and in MOCOS, encoding molybdenum cofactor sulphurase, with allopurinol response (PSKAT-C = 0.011). Evidence for genetic association with allopurinol response in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.002) and MOCOS (PSKAT-C < 0.001) was stronger when adherence to allopurinol therapy was confirmed by plasma oxypurinol. CONCLUSION: We provide evidence for common and rare genetic variation in MOCOS associating with allopurinol response.

6.
Nat Rev Rheumatol ; 20(8): 510-523, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992217

ABSTRACT

The pathogenesis of gout involves a series of steps beginning with hyperuricaemia, followed by the deposition of monosodium urate crystal in articular structures and culminating in an innate immune response, mediated by the NLRP3 inflammasome, to the deposited crystals. Large genome-wide association studies (GWAS) of serum urate levels initially identified the genetic variants with the strongest effects, mapping mainly to genes that encode urate transporters in the kidney and gut. Other GWAS highlighted the importance of uncommon genetic variants. More recently, genetic and epigenetic genome-wide studies have revealed new pathways in the inflammatory process of gout, including genetic associations with epigenomic modifiers. Epigenome-wide association studies are also implicating epigenomic remodelling in gout, which perhaps regulates the responsiveness of the innate immune system to monosodium urate crystals. Notably, genes implicated in gout GWAS do not include those encoding components of the NLRP3 inflammasome itself, but instead include genes encoding molecules involved in its regulation. Knowledge of the molecular mechanisms underlying gout has advanced through the translation of genetic associations into specific molecular mechanisms. Notable examples include ABCG2, HNF4A, PDZK1, MAF and IL37. Current genetic studies are dominated by participants of European ancestry; however, studies focusing on other population groups are discovering informative population-specific variants associated with gout.


Subject(s)
Genome-Wide Association Study , Gout , Gout/genetics , Humans , Epigenomics/methods , Genetic Predisposition to Disease , Epigenesis, Genetic , Transcriptome , Uric Acid/blood , Uric Acid/metabolism , Hyperuricemia/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
7.
Arthritis Rheumatol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932509

ABSTRACT

OBJECTIVE: Caffeine, an adenosine receptor antagonist, is a potent central nervous system stimulant that also impairs insulin signaling. Recent studies have suggested that coffee consumption lowers serum urate (SU) and protects against gout by unknown mechanisms. We hypothesized that caffeine lowers SU by affecting activity of urate transporters. METHODS: We examined the effect of caffeine and adenosine on basal and insulin stimulation of net 14C-urate uptake in the human renal proximal tubule cell line PTC-05 and on individual urate transporters expressed in Xenopus laevis oocytes. RESULTS: We found that caffeine and adenosine efficiently inhibited both basal and insulin stimulation of net 14C-urate uptake mediated by endogenous urate transporters in PTC-05 cells. In oocytes expressing individual urate transporters, caffeine (>0.2 mM) more efficiently inhibited the basal urate transport activity of GLUT9 isoforms, OAT4, OAT1, OAT3, NPT1, ABCG2, and ABCC4 than did adenosine without significantly affecting URAT1 and OAT10. However, unlike adenosine, caffeine at lower concentrations (<0.2 mM) very effectively inhibited insulin activation of urate transport activity of GLUT9, OAT10, OAT1, OAT3, NPT1, ABCG2, and ABCC4 by blocking activation of Akt and extracellular signal-regulated kinase. CONCLUSION: We postulate that inhibition of urate transport activity of the re-absorptive transporters GLUT9, OAT10, and OAT4 by caffeine is a key mechanism in its urate-lowering effects. Additionally, the ability of caffeine to block insulin-activated urate transport by GLUT9a and OAT10 suggests greater relative inhibition of these transporters in hyperinsulinemia.

8.
Arthritis Rheumatol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925627

ABSTRACT

OBJECTIVE: Initiating urate-lowering therapy (ULT) in gout can precipitate arthritis flares. There have been limited comparisons of flare risk during the initiation and escalation of allopurinol and febuxostat, administered as a treat-to-target strategy with optimal anti-inflammatory prophylaxis. METHODS: This was a post-hoc analysis of a 72-week randomized, double-blind, placebo-controlled, noninferiority trial comparing the efficacy of allopurinol and febuxostat. For this analysis, the occurrence of flares was examined during weeks 0 to 24 when ULT was initiated and titrated to a serum urate (sUA) goal of less than 6 mg/dl (<5 mg/dl if tophi). Flares were assessed at regular intervals through structured participant interviews. Predictors of flare, including treatment assignment, were examined using multivariable Cox proportional hazards regression. RESULTS: Study participants (n = 940) were predominantly male (98.4%) and had a mean age of 62.1 years with approximately equal proportions receiving allopurinol or febuxostat. Mean baseline sUA was 8.5 mg/dl and all participants received anti-inflammatory prophylaxis (90% colchicine). In a multivariable model, there were no significant associations of ULT treatment (hazard ratio [HR] 1.17; febuxostat vs allopurinol), ULT-dose escalation (HR 1.18 vs no escalation), prophylaxis type, or individual comorbidity with flare and no evidence of ULT-dose escalation interaction. Factors independently associated with flare risk during ULT initiation/escalation included younger age, higher baseline sUA, and absence of tophi. CONCLUSION: These results demonstrate that gout flare risk during the initiation and titration of allopurinol is similar to febuxostat when these agents are administered according to a treat-to-target strategy using gradual ULT-dose titration and best practice gout flare prophylaxis.

9.
Am J Med Sci ; 368(1): 33-39, 2024 07.
Article in English | MEDLINE | ID: mdl-38561045

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is an inflammatory arthritis in which the immune system targets synovial joints. Methotrexate serves as the mainstay of treatment for RA due to its efficacy. However, patients treated with methotrexate are uniquely at risk for vitamin B12 deficiency and hyperhomocysteinemia due to coincident disease risk factors and the fact that methotrexate use is associated with malabsorption. The objective of this study was to assess for vitamin B12 deficiency among patients with RA treated with methotrexate and folic acid. METHODS: This cross-sectional study included 50 patients with RA treated with methotrexate and folic acid and 49 patients with RA treated with other therapies. Patients were matched by age, sex, race, renal function, and disease activity. We compared plasma vitamin B12, methylmalonic acid, and homocysteine levels between these two groups utilizing quantitative and categorical analyses. RESULTS: Thirty-seven (74%) RA patients on methotrexate and folic acid had elevated plasma homocysteine levels compared with only 27 (55%) RA patients receiving other therapies (P < 0.05). The proportion of patients with low vitamin B12 and high methylmalonic acid levels did not differ between the two groups. CONCLUSIONS: Our data show high plasma homocysteine levels among RA patients treated with methotrexate and folic acid. While plasma vitamin B12 levels were similar between the two groups, high plasma homocysteine is also a sensitive marker of vitamin B12 deficiency. Additional studies should evaluate for the presence of clinical features of vitamin B12 deficiency and hyperhomocysteinemia among RA patients treated with methotrexate and folic acid.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Folic Acid , Hyperhomocysteinemia , Methotrexate , Vitamin B 12 Deficiency , Vitamin B 12 , Humans , Methotrexate/therapeutic use , Methotrexate/adverse effects , Folic Acid/blood , Folic Acid/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/blood , Female , Male , Hyperhomocysteinemia/blood , Hyperhomocysteinemia/chemically induced , Hyperhomocysteinemia/epidemiology , Middle Aged , Vitamin B 12/blood , Cross-Sectional Studies , Aged , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/adverse effects , Vitamin B 12 Deficiency/chemically induced , Vitamin B 12 Deficiency/blood , Vitamin B 12 Deficiency/epidemiology , Homocysteine/blood , Adult , Methylmalonic Acid/blood
10.
Nat Commun ; 15(1): 3441, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658550

ABSTRACT

Hyperuricemia is an essential causal risk factor for gout and is associated with cardiometabolic diseases. Given the limited contribution of East Asian ancestry to genome-wide association studies of serum urate, the genetic architecture of serum urate requires exploration. A large-scale cross-ancestry genome-wide association meta-analysis of 1,029,323 individuals and ancestry-specific meta-analysis identifies a total of 351 loci, including 17 previously unreported loci. The genetic architecture of serum urate control is similar between European and East Asian populations. A transcriptome-wide association study, enrichment analysis, and colocalization analysis in relevant tissues identify candidate serum urate-associated genes, including CTBP1, SKIV2L, and WWP2. A phenome-wide association study using polygenic risk scores identifies serum urate-correlated diseases including heart failure and hypertension. Mendelian randomization and mediation analyses show that serum urate-associated genes might have a causal relationship with serum urate-correlated diseases via mediation effects. This study elucidates our understanding of the genetic architecture of serum urate control.


Subject(s)
Genome-Wide Association Study , Hyperuricemia , Uric Acid , Humans , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Gout/genetics , Gout/blood , Heart Failure/genetics , Heart Failure/blood , Hypertension/genetics , Hypertension/blood , Hyperuricemia/genetics , Hyperuricemia/blood , Mendelian Randomization Analysis , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Transcriptome , Uric Acid/blood
11.
Sci Rep ; 14(1): 8825, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38627436

ABSTRACT

In Maori and Pacific adults, the CREBRF rs373863828 minor (A) allele is associated with increased body mass index (BMI) but reduced incidence of type-2 and gestational diabetes mellitus. In this prospective cohort study of Maori and Pacific infants, nested within a nutritional intervention trial for pregnant women with obesity and without pregestational diabetes, we investigated whether the rs373863828 A allele is associated with differences in growth and body composition from birth to 12-18 months' corrected age. Infants with and without the variant allele were compared using generalised linear models adjusted for potential confounding by gestation length, sex, ethnicity and parity, and in a secondary analysis, additionally adjusted for gestational diabetes. Carriage of the rs373863828 A allele was not associated with altered growth and body composition from birth to 6 months. At 12-18 months, infants with the rs373863828 A allele had lower whole-body fat mass [FM 1.4 (0.7) vs. 1.7 (0.7) kg, aMD -0.4, 95% CI -0.7, 0.0, P = 0.05; FM index 2.2 (1.1) vs. 2.6 (1.0) kg/m2 aMD -0.6, 95% CI -1.2,0.0, P = 0.04]. However, this association was not significant after adjustment for gestational diabetes, suggesting that it may be mediated, at least in part, by the beneficial effect of CREBRF rs373863828 A allele on maternal glycemic status.


Subject(s)
Body Composition , Diabetes, Gestational , Tumor Suppressor Proteins , Female , Humans , Infant , Pregnancy , Body Composition/genetics , Body Mass Index , Maori People , Obesity , Prospective Studies , Tumor Suppressor Proteins/genetics
12.
Res Sq ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38464136

ABSTRACT

Background: Gout, the most common inflammatory arthritis disease, and hyperuricaemia onset are influenced by environmental and genetic factors. We sought to investigate these factors in an Indigenous community in Guam. Methods: In this cross-sectional study, the University of Guam led the qualitative inquiry with the native community, training (pre-screening of participants, data collection methods, and biospecimen handling), study implementation (outreach and recruitment, data collection, and DNA extraction and quantification), and qualitative and epidemiologic data analyses. Recruitment targets were based on demographic representation in current census data. The University of Otago collaborated on ethics guidance, working with Indigenous communities, and led the genetic sequencing and genetic data analysis. Participants were recruited in Guam from Fall 2019 to Spring 2022. Results: Of the 359 participants, most self-identified as Native CHamorus (61.6%) followed by Other Micronesians (22.0%), and Filipinos (15.6%). The prevalence of metabolic conditions from highest to lowest were obesity (55.6%), hyperuricaemia (36.0%), hypertension (27.8%), gout (23.0%), diabetes (14.9%), cardiovascular disease (8.4%), kidney disease (7.3%), and liver disease (3.4%). Compared to Filipinos and Other Micronesians, significantly more CHamorus had hyperuricaemia (42.1% versus 26.8% in Filipinos and 25.3% in Other Micronesians), gout (28.5% versus 21.4% and 8.9%), diabetes (19.5% versus 8.9% and 6.3%), and hypertension (33.9% versus 19.6% and 16.5%). Conclusions: We estimated the prevalence of metabolic conditions, especially gout and hyperuricaemia, and found statistical differences among major ethnic groups in Guam, all while obtaining the Indigenous community's feedback on the genetic study and building gout research capacity. The results of ongoing genetic sequencing will be used to understand molecular causes of gout in Guam.

13.
Sci Rep ; 14(1): 3565, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347000

ABSTRACT

Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.


Subject(s)
Gout , Hyperuricemia , Humans , Uric Acid/metabolism , Hyperuricemia/complications , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Leukocytes, Mononuclear/metabolism , Genome-Wide Association Study , Gout/genetics , Gout/complications , Inflammation/metabolism , Cytokines/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
14.
Front Nutr ; 11: 1308882, 2024.
Article in English | MEDLINE | ID: mdl-38347962

ABSTRACT

Access to clean and safe drinking water is essential. This study aimed to evaluate the effect of a kind of small molecular natural mineral water, C-cell mineral water on hyperuricemia male mice metabolism condition. A 13-week drinking water intervention study was conducted in Uox-knockout mice (KO). The hepatic metabolite profiling and related genes expression were detected by UPLC-TOF-MS and transcriptomic, and the gut microbiota of KO mice was determined by metagenomics sequencing. Results showed that the body weight of mice fed with C-cell water was remarkably lower than that of control mice on D 77 and D 91. Hepatic metabolite profiling revealed a shift in the pathway of glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and biosynthesis of cofactors in KO mice fed with C-cell mineral water. Increased energy metabolism levels were related to increased hepatic expression of genes responsible for coenzyme metabolism and lipid metabolism. Gut microbiota was characterized by increasing activity of beneficial bacteria Blautia, and reducing activity of pathobiont bacteria Parasutterella. These genera have been reported to be associated with obesity. Small molecular mineral-rich natural water ingestion regulates metabolism and gut microbiota, protecting against obesity induced by hyperuricemia through mediating a microbiota-liver axis.

15.
Semin Arthritis Rheum ; 65: 152405, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335695

ABSTRACT

OBJECTIVE: Adolescent-onset gout has a greater impact on the lives and health of patients than adult-onset gout. However, there is a relative lack of clinical information on adolescent-onset gout. Hence, we analyzed a Chinese cohort. METHODS: We studied clinical features of 9,003 Chinese patients. Gout onset age of 12 - 19 years is defined as adolescent-onset group (AG), 20 - 40 years as early-onset group (EG), and 41 - 64 years as late-onset group (LG). Multivariable regression analysis evaluated factors associated with recurrent flares, serum urate (SU) levels, and underexcretion type in AG. RESULTS: Compared with EG and LG, the AG had higher SU levels [AG: 9.5 (2.2) mg/dL, EG: 8.6 (2.1) mg/dL, LG: 7.73 (2.0) mg/dL, P < 0.001], higher percentage of positive family history of gout (AG: 41.8 %, EG: 29.6 %, LG: 24.6 %, P < 0.001), underexcretion type (AG: 62.4 %, EG: 62.5 %, LG: 58.8 %, P = 0.04), recurrent flares (AG: 78.1 %, EG: 70.3 %, LG: 68.9 %, P = 0.01). Urate-lowering therapy (ULT) initiated [OR 6.58 (95 % CI 1.35 - 32.00)] and hypercholesterolemia [OR 4.16 (95 % CI 1.28 - 13.53)] were associated with recurrent flares. eGFR was identified to be a significant variable of increasing SU levels [beta -0.24 (95 % CI -0.04 to -0.01)]. Hypertriglyceridemia [OR 0.35 (95 % CI 0.17 - 0.71)] was related to underexcretion type. CONCLUSION: Adolescent-onset gout patients had clinically distinctive features with higher SU levels, BMI, positive gout family history, underexcretion type and recurrent flares. These specific populations were less likely to achieve ULT target, requiring more clinical attention.


Subject(s)
Gout , Uric Acid , Adult , Humans , Adolescent , Child , Young Adult , Cross-Sectional Studies , Gout Suppressants/therapeutic use , Gout/diagnosis , Gout/drug therapy , China
16.
Br J Clin Pharmacol ; 90(5): 1268-1279, 2024 May.
Article in English | MEDLINE | ID: mdl-38359899

ABSTRACT

AIMS: Dose escalation at the initiation of allopurinol therapy can be protracted and resource intensive. Tools to predict the allopurinol doses required to achieve target serum urate concentrations would facilitate the implementation of more efficient dose-escalation strategies. The aim of this research was to develop and externally evaluate allopurinol dosing tools, one for use when the pre-urate-lowering therapy serum urate is known (Easy-Allo1) and one for when it is not known (Easy-Allo2). METHODS: A revised population pharmacokinetic-pharmacodynamic model was developed using data from 653 people with gout. Maintenance doses to achieve the serum urate target of <0.36 mmol L-1 in >80% of individuals were simulated and evaluated against external data. The predicted and observed allopurinol doses were compared using the mean prediction error (MPE) and root mean square error (RMSE). The proportion of Easy-Allo predicted doses within 100 mg of the observed was quantified. RESULTS: Allopurinol doses were predicted by total body weight, baseline urate, ethnicity and creatinine clearance. Easy-Allo1 produced unbiased and suitably precise dose predictions (MPE 2 mg day-1 95% confidence interval [CI] -13-17, RMSE 91%, 90% within 100 mg of the observed dose). Easy-Allo2 was positively biased by about 70 mg day-1 and slightly less precise (MPE 70 mg day-1 95% CI 52-88, RMSE 131%, 71% within 100 mg of the observed dose). CONCLUSIONS: The Easy-Allo tools provide a guide to the allopurinol maintenance dose requirement to achieve the serum urate target of <0.36 mmol L-1 and will aid in the development of novel dose-escalation strategies for allopurinol therapy.


Subject(s)
Allopurinol , Dose-Response Relationship, Drug , Gout Suppressants , Gout , Models, Biological , Uric Acid , Allopurinol/administration & dosage , Allopurinol/pharmacokinetics , Humans , Gout/drug therapy , Gout/blood , Gout Suppressants/administration & dosage , Gout Suppressants/pharmacokinetics , Uric Acid/blood , Male , Female , Middle Aged , Aged , Adult , Drug Dosage Calculations , Computer Simulation
17.
Joint Bone Spine ; 91(3): 105698, 2024 May.
Article in English | MEDLINE | ID: mdl-38309518

ABSTRACT

OBJECTIVE: Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS: PBMCs pre-treated with urate produced more interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION: In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.


Subject(s)
Cytokines , Gout , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Uric Acid , Humans , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Uric Acid/pharmacology , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Gout/genetics , Gout/metabolism , Cells, Cultured , Male , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Hyperuricemia/metabolism , Female , Middle Aged , DNA Methylation , Janus Kinase 2/metabolism
18.
Arthritis Res Ther ; 26(1): 45, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38331848

ABSTRACT

BACKGROUND: Alcohol consumption is a risk factor for hyperuricaemia and gout. Multiple single-nucleotide polymorphisms (SNPs) have been identified as associated with both alcohol consumption and serum urate or gout in separate genome-wide association studies (GWAS). This study aimed to identify and characterise interactions between these shared signals of genetic association and alcohol consumption for serum urate level, hyperuricaemia, and gout. METHODS: This research was conducted using the UK Biobank resource. The association of alcohol consumption with serum urate and gout was tested among 458,405 European participants. Candidate SNPs were identified by comparing serum urate, gout, and alcohol consumption GWAS for shared signals of association. Multivariable-adjusted linear and logistic regression analyses were conducted with the inclusion of interaction terms to identify SNP-alcohol consumption interactions for association with serum urate level, hyperuricaemia, and gout. The nature of these interactions was characterised using genotype-stratified association analyses. RESULTS: Alcohol consumption was associated with elevated serum urate and gout. For serum urate level, non-additive interactions were identified between alcohol consumption and rs1229984 at the ADH1B locus (P = 3.0 × 10-44) and rs6460047 at the MLXIPL locus (P = 1.4 × 10-4). ADH1B also demonstrated interaction with alcohol consumption for hyperuricaemia (P = 7.9 × 10-13) and gout (P = 8.2 × 10-9). Beer intake had the most significant interaction with ADH1B for association with serum urate and gout among men, while wine intake had the most significant interaction among women. In the genotype-stratified association analyses, ADH1B and MLXIPL were associated with serum urate level and ADH1B was associated with hyperuricaemia and gout among consumers of alcohol but not non-consumers. CONCLUSIONS: In this large study of European participants, novel interactions with alcohol consumption were identified at ADH1B and MLXIPL for association with serum urate level and at ADH1B for association with hyperuricaemia and gout. The association of ADH1B with serum urate and gout may occur through the modulation of alcohol metabolism rate among consumers of alcohol.


Subject(s)
Gout , Hyperuricemia , Female , Humans , Male , Alcohol Dehydrogenase/genetics , Alcohol Drinking/genetics , Ethnicity , Genome-Wide Association Study , Gout/genetics , Hyperuricemia/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Uric Acid
19.
Arthritis Rheumatol ; 76(7): 1130-1140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412854

ABSTRACT

OBJECTIVE: Hyperuricemia can be stratified into four subtypes according to renal uric acid handling. The aim of this study was to comprehensively describe the biologic characteristics (including genetic background) of clinically defined hyperuricemia subtypes in two large geographically independent gout cohorts. METHODS: Hyperuricemia subtype was defined as renal uric acid overload (ROL), renal uric acid underexcretion (RUE), combined, or renal normal. Twenty single nucleotide polymorphisms (SNPs) previously identified as gout risk loci or associated with serum urate (SU) concentration in the East Asian population were genotyped. Weighted polygenic risk scores were calculated to assess the cumulative effect of genetic risks on the subtypes. RESULTS: Of the 4,873 participants, 8.8% had an ROL subtype, 60.9% RUE subtype, 23.1% combined subtype, and 7.2% normal subtype. The ROL subtype was independently associated with older age at onset, lower SU, tophi, and diabetes mellitus; RUE was associated with lower body mass index (BMI) and non-diabetes mellitus; the combined subtype was associated with younger age at onset, higher BMI, SU, estimated glomerular filtration rate (eGFR), and smoking; and the normal subtype was independently associated with older age at onset, lower SU, and eGFR. Thirteen SNPs were associated with gout with 6 shared loci and subtype-dependent risk loci patterns. High polygenic risk scores were associated with ROL subtype (odds ratio [OR] = 9.63, 95% confidence interval [95% CI] 4.53-15.12), RUE subtype (OR = 2.18, 95% CI 1.57-3.03), and combined subtype (OR = 6.32, 95% CI 4.22-9.48) compared with low polygenic risk scores. CONCLUSION: Hyperuricemia subtypes classified according to renal uric acid handling have subtype-specific clinical and genetic features, suggesting subtype-unique pathophysiologic mechanisms.


Subject(s)
Gout , Hyperuricemia , Phenotype , Polymorphism, Single Nucleotide , Uric Acid , Humans , Gout/genetics , Hyperuricemia/genetics , Male , Middle Aged , Uric Acid/blood , Female , Adult , Kidney , Aged , Genetic Predisposition to Disease , Age of Onset , Genotype , Asian People/genetics
20.
Article in English | MEDLINE | ID: mdl-38243706

ABSTRACT

OBJECTIVE: Although clinical and genetic risk factors have been identified for rheumatoid arthritis-associated interstitial lung disease (RA-ILD), there are no current tools allowing for risk stratification. We sought to develop and validate an ILD risk model in a large, multicentre, prospective RA cohort. METHODS: Participants in the Veterans Affairs RA (VARA) registry were genotyped for 12 single nucleotide polymorphisms (SNPs) associated with idiopathic pulmonary fibrosis. ILD was validated through systematic record review. A genetic risk score (GRS) was computed from minor alleles weighted by effect size with ILD, using backward selection. The GRS was combined with clinical risk factors within a logistic regression model. Internal validation was completed using bootstrapping, and model performance was assessed by the area under the receiver operating curve (AUC). RESULTS: Of 2,386 participants (89% male, mean age 69.5 years), 9.4% had ILD. Following backward selection, five SNPs contributed to the GRS. The GRS and clinical factors outperformed clinical factors alone in discriminating ILD (AUC 0.675 vs 0.635, p< 0.001). The shrinkage-corrected performance for combined and clinical-only models was 0.667 (95% CI 0.628, 0.712) and 0.623 (95% CI 0.584, 0.651), respectively. Twenty percent of the cohort had a combined risk score below a cut-point with >90% sensitivity. CONCLUSION: A clinical and genetic risk model discriminated ILD in a large, multicentre RA cohort better than a clinical-only model, excluding 20% of the cohort from low-yield testing. These results demonstrate the potential utility of a GRS in RA-ILD and support further investigation into individualized risk stratification and screening.

SELECTION OF CITATIONS
SEARCH DETAIL