Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; 27(31): 8118-8126, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33819362

ABSTRACT

Detection of metals in different environments with high selectivity and specificity is one of the prerequisites of the fight against environmental pollution with these elements. Pyrenes are well suited for the fluorescence sensing in different media. The applied sensing principle typically relies on the formation of intra- and intermolecular excimers, which is however limiting the sensitivity range due to masking of e. g. quenching effects by the excimer emission. Herein we report a highly selective, structurally rigid chemical sensor based on the monomer fluorescence of pyrene moieties bearing triazole groups. This sensor can quantitatively detect Cu2+ , Pb2+ and Hg2+ in organic solvents over a broad concentrations range, even in the presence of ubiquitous ions such as Na+ , K+ , Ca2+ and Mg2+ . The strongly emissive sensor's fluorescence with a long lifetime of 165 ns is quenched by a 1 : 1 complex formation upon addition of metal ions in acetonitrile. Upon addition of a tenfold excess of the metal ion to the sensor, agglomerates with a diameter of about 3 nm are formed. Due to complex interactions in the system, conventional linear correlations are not observed for all concentrations. Therefore, a critical comparison between the conventional Job plot interpretation, the method of Benesi-Hildebrand, and a non-linear fit is presented. The reported system enables the specific and robust sensing of medically and environmentally relevant ions in the health-relevant nM range and could be used e. g. for the monitoring of the respective ions in waste streams.

2.
Small ; 15(48): e1901551, 2019 11.
Article in English | MEDLINE | ID: mdl-31207085

ABSTRACT

Nanodiamond (ND) is a versatile and promising material for bioapplications. Despite many efforts, agglomeration of nanodiamond and the nonspecific adsorption of proteins on the ND surface when exposed to biofluids remains a major obstacle for biomedical applications. Here, the functionalization of detonation nanodiamond with zwitterionic moieties in combination with tetraethylene glycol (TEG) moieties immobilized by click chemistry to improve the colloidal dispersion in physiological media with strong ion background and for the simultaneous prevention of nonspecific interactions with proteins is reported. Based on five building blocks, a series of ND conjugates is synthesized and their performance is compared in biofluids, such as fetal bovine serum (FBS) and Dulbecco's modified Eagle medium (DMEM). The adsorption of proteins is investigated via dynamic light scattering (DLS) and thermogravimetric analysis. The colloidal stability is tested with DLS monitoring over prolonged periods of time in various ratios of water/FBS/DMEM and at different pH values. The results show that zwitterions efficiently promote the anti-fouling properties, whereas the TEG linker is essential for the enhanced colloidal stability of the particles.


Subject(s)
Colloids/chemistry , Culture Media/chemistry , Nanodiamonds/chemistry , Adsorption , Dynamic Light Scattering , Escherichia coli/growth & development , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL