Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genom Data ; 25(1): 55, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851674

ABSTRACT

OBJECTIVES: The oak processionary moth (OPM) (Thaumetopoea processionea) is a species of moth (order: Lepidoptera) native to parts of central Europe. However, in recent years, it has become an invasive species in various countries, particularly in the United Kingdom and the Netherlands. The larvae of the OPM are covered with urticating barbed hairs (setae) causing irritating and allergic reactions at the three last larval stages (L3-L5). The aim of our study was to generate a de novo transcriptomic assembly for OPM larvae by including one non-allergenic stage (L2) and two allergenic stages (L4 and L5). A transcriptomic assembly will help identify potential allergenic peptides produced by OPM larvae, providing valuable information for developing novel therapeutic strategies and allergic immunodiagnostic assays. DATA: Transcriptomes of three larval stages of the OPM were de novo assembled and annotated using Trinity and Trinotate, respectively. A total of 145,251 transcripts from 99,868 genes were identified. Bench-marking universal single-copy orthologues analysis indicated high completeness of the assembly. About 19,600 genes are differentially expressed between the non-allergenic and allergenic larval stages. The data provided here contribute to the characterization of OPM, which is both an invasive species and a health hazard.


Subject(s)
Larva , Moths , Transcriptome , Animals , Moths/genetics , Moths/immunology , Larva/genetics , Larva/metabolism , Larva/immunology , Gene Expression Profiling , Allergens/immunology , Allergens/genetics
2.
New Phytol ; 220(2): 460-475, 2018 10.
Article in English | MEDLINE | ID: mdl-30028013

ABSTRACT

Climate change will further constrain water availability in dry inner-alpine environments and affect water relations and growth conditions in mountain forests, including the widespread larch forests. To estimate the effects of climate conditions on water balance and growth, variation in sap flow and stem radius of European larch was measured for 3 yr along an elevation transect from 1070 to 2250 m above sea level (asl) in an inner-alpine dry valley in South Tyrol/Italy. Additionally, long-term climate-growth relations were derived from tree cores. Sap flow and radial growth were reduced in dry periods up to an elevation of 1715 m, leading to maximum annual growth at 2000 m. In a wet year no growth difference between elevations was observed. Long-term tree ring data showed a positive growth response to precipitation up to 1715 m and to temperature only above 2000 m. Our results demonstrate that reduced water availability and higher atmospheric water demand limit larch at low elevation within dry Alpine regions. This indicates a general upward shift of this species' elevational amplitude upon climate change, and respective negative effects on future silvicultural use and ecosystem services at lower elevations in the European Alps.


Subject(s)
Ecosystem , Larix/growth & development , Larix/physiology , Plant Transpiration/physiology , Dehydration , Geography , Italy , Microclimate , Rain , Temperature , Time Factors , Trees/growth & development , Trees/physiology , Vapor Pressure , Water
SELECTION OF CITATIONS
SEARCH DETAIL