Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Front Immunol ; 15: 1390137, 2024.
Article in English | MEDLINE | ID: mdl-38807585

ABSTRACT

L-carnitine, available as feed additive, is essential for the beta-oxidation of free fatty acids in the mitochondrial matrix. It provides energy to immune cells and may positively impact the functionality of leukocytes during the acute phase response, a situation of high energy demand. To test this hypothesis, German Holstein cows were assigned to a control group (CON, n = 26) and an L-carnitine supplemented group (CAR, n = 27, rumen-protected L-carnitine product: 125 g/cow/d, corresponded to total L-carnitine intake: 25 g/cow/d, supplied with concentrate) and received an intravenous bolus injection of lipopolysaccharides (LPS, 0.5 µg/kg body weight, E. coli) on day 111 postpartum as a model of standardized systemic inflammation. Blood samples were collected from day 1 ante injectionem until day 14 post injectionem (pi), with frequent sampling through an indwelling venous catheter from 0.5 h pi to 12 h pi. All parameters of the white blood cell count responded significantly to LPS, while only a few parameters were affected by L-carnitine supplementation. The mean eosinophil count, as well as the percentage of basophils were significantly higher in CAR than in CON over time, which may be due to an increased membrane stability. However, phagocytosis and production of reactive oxygen species by leukocytes remained unchanged following L-carnitine supplementation. In conclusion, although supplementation with 25 g L-carnitine per cow and day resulted in increased proportions of specific leukocyte populations, it had only minor effects on the functional parameters studied in mid-lactating dairy cows during LPS-induced inflammation, and there was no evidence of direct improvement of immune functionality.


Subject(s)
Carnitine , Dietary Supplements , Inflammation , Lactation , Lipopolysaccharides , Animals , Cattle , Carnitine/pharmacology , Carnitine/administration & dosage , Female , Inflammation/immunology , Leukocyte Count
2.
Arch Anim Nutr ; : 1-16, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796745

ABSTRACT

Preserved feed from meadows contaminated with ragwort (Jacobaea vulgaris, Gaertn.) may expose livestock to pyrrolizidine alkaloids (PA). Dairy cows are considered to be very susceptible animals and a PA ingestion can lead to liver and further organ damages and even death. Due to the lack of data, the present study aimed to evaluate critical PA doses based on organ effects, with a special focus on liver lesions and on indicators of energy metabolism. Therefore, 16 dairy cows (n = 4 per group) were exposed to increasing PA doses (group: CONMolasses: <0.001 mg PA/kg body weight (BW)/day (d); PA1: 0.47 mg PA/kg BW/d; PA2: 0.95 mg PA/kg BW/d; PA3: 1.91 mg PA/kg BW/d) for 28 days. Constant dosing was ensured by a defined PA extract administered orally once daily. Histological examinations of the livers showed infiltration by immune cells, higher proportions of apoptotic cells and enlargement of hepatocyte nuclei in the highest exposed group. In addition, bile volume increased with PA dose, which may indicate a cholestasis. Despite the signs of incipient liver damage, liver lipid content and clinical chemical parameters related to energy metabolism, such as glucose, non-esterified fatty acids and ßhydroxybutyrate, remained unaffected. Fat depot masses were also not significantly altered over time, suggesting that PA exposure did not induce a wasting syndrome. The liver showed slight microscopic changes already at a dosage of 0.95 mg PA/kg BW/d. However, the short-term metabolic indicators of energy status, lipolysis and ketogenesis, glucose, NEFA and BHB, as well as changes in fat depot, which serves as a longer-term indicator of lipolysis, remained unaffected in all treatment groups in the chosen scenario. These findings suggest that despite histopathological and clinical-chemical evidence of PA-associated hepatocellular lesions, liver function was not compromised.

3.
Arch Anim Nutr ; 77(5): 363-384, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37842997

ABSTRACT

The increasing spread of ragworts is observed with concern. Ragworts like tansy ragwort (Jacobaea vulgaris Gaertn.) or marsh ragwort (J. aquatica) contain pyrrolizidine alkaloids (PA) which may induce hepatotoxic effects. Grazing animals usually avoid ragworts if their pasture management is appropriate. Preserved feed prepared from ragworts contaminated meadows may, however, lead to a significant exposure to PA. Previous studies on toxicity of PA for dairy cows revealed inconsistent results due to feeding ragwort plant material which was associated with heterogeneous PA exposure and thus failed to conclusively deduce critical PA doses. Therefore, the aim of the present study was to expose dairy cows (n = 4 per group) in a short-term scenario for 28 days with increasing PA doses (PA1: 0.47 mg PA/kg body weight (BW)/day (d); PA2: 0.95 mg PA/kg BW/d; PA3: 1.91 mg PA/kg BW/d) via oral administration by gavage of a defined PA-extract. While group PA3 was dosed with the PA-extract alone, groups PA2 and PA1 received PA-extracts blended in similar volumes with molasses to provide comparable amounts of sugar. Additionally, two control groups were treated either with water (CONWater) or with molasses (CONMolasses) to assess the effects of sugar without PA interference. While clinical traits including dry matter intake, milking performance, rectal body temperature, ruminal activity and body condition score (BCS) were not influenced by PA exposure, activities of enzymes indicative for liver damages, such as gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH), increased significantly over time at an exposure of 1.91 mg total PA/kg BW/d.


Subject(s)
Pyrrolizidine Alkaloids , Senecio , Tanacetum , Female , Cattle , Animals , Pyrrolizidine Alkaloids/toxicity , Diet/veterinary , Animal Feed/analysis , Water , Plant Extracts , Sugars
4.
PLoS One ; 18(6): e0286995, 2023.
Article in English | MEDLINE | ID: mdl-37294795

ABSTRACT

Maternal exposure to various stimuli can influence pre- and postnatal development of the offspring. This potential has been discussed for glyphosate (GLY), active substance in some non-selective herbicides. Accordingly, present study investigated putative effects of GLY residues in rations on cows and their offspring. Dams received either GLY-contaminated (GLY groups) or control (CON groups) rations combined with low (LC groups) or high (HC groups) concentrate feed proportions (CFP) for 16 weeks during mid- and late lactation and early gestation (59±4 days at beginning of GLY exposure; mean±SE). During this feeding trial, average daily GLY exposures of dams were 1.2 (CONLC), 1.1 (CONHC), 112.5 (GLYLC) and 130.3 (GLYHC) µg/kg body weight/d. After a depletion period (107±4 days; mean±SE) and calving, blood samples of dams and their calves were collected (5-345 min after birth) before calves were fed colostrum and analyzed for hematological and clinical-chemical traits, redox parameters, functional properties of leukocytes and DNA damage in leukocytes. No evidence for malformations of newborn calves could be collected. At parturition, most analyzed blood parameters were not affected by dietary treatment of dams during gestation. Significant GLY effects were observed for some traits, e.g. blood non-esterified fatty acids (NEFA) in calves. These deviations of GLY groups from CON groups likely resulted from strong time-dependent responses of NEFA levels within the first 105 minutes after birth and before colostrum intake (Spearman´s rank correlation R = 0.76, p<0.001). Additionally, significant GLY effects did not result in differences in measures that were beyond normally observed ranges questioning a pathological relevance. In summary, no evidence for teratogenic or other clear effects of GLY or CFP on analyzed parameters of dams and their newborn calves could be collected under applied conditions. However, detailed studies including GLY exposure during late and complete gestation period would be needed to rule out teratogenic effects.


Subject(s)
Diet , Fatty Acids, Nonesterified , Animals , Cattle , Female , Pregnancy , Animal Feed/analysis , Animals, Newborn , Blood Cells , Diet/veterinary , DNA Damage , Fatty Acids, Nonesterified/analysis , Milk/chemistry , Glyphosate
5.
J Pers Med ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37374007

ABSTRACT

The unsolved problem in three-dimensional surgical planning for patients with facial deformity, dysgnathia, or asymmetry is the lack of a normative database of "norm skulls" that can be used as treatment objectives. A study was conducted on 90 Eurasian persons (46 male and 44 female adults) for whom cone beam-computed tomography images were available. Inclusion criteria were adult patients with a skeletal Class I pattern, proper interincisal relationship with normal occlusion, the absence of an open bite both in the anterior and posterior region, and a normal and balanced facial appearance; patients with dysgnathia and malformations were excluded. A total of 18 landmarks were digitized and 3D cephalometric measurements were performed and analyzed by means of proportions calculated from the landmarks. Male and female skulls were analyzed, as well as subdivisions revealed by cluster analysis. The data showed that four subtypes of skulls were distinguishable with statistical significance (p < 0.05). A male and a female type subdivided in a brachiocephalic and dolichocephalic phenotype could be identified. For each type, a mean shape was calculated by a Procrustes transformation, which, in turn, was used to create four template skulls from a male and a female skull. This was accomplished by fitting the polygon models of the two skulls to each of the two subtypes based on the landmarks marked on them using a thin plate spline transformation. The normative data of the subtypes can individually serve as a guide for orthodontic surgery in the Eurasian population, which is especially helpful in 3D planning and the execution of craniofacial operations.

6.
Animals (Basel) ; 13(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37174536

ABSTRACT

Glyphosate (GLY), the active substance in non-selective herbicides, is often found in ruminant feed. The present feeding study aimed to investigate the effects of GLY-contaminated rations and different concentrate feed proportions (CFP) on the health of fattening German Holstein bulls. Bulls were grouped by low (LC) or high (HC) CFP with (GLYLC, GLYHC) or without GLY-contaminations (CONLC, CONHC) in their rations. Intakes (dry matter, water) and body weight were documented continuously lasting over an average range from 392.2 ± 60.4 kg to 541.2 ± 67.4 kg (mean ± SD). Blood samples collected at the trial's beginning, and after 7 and 15 weeks, were analyzed for hematological and clinical-chemical traits, functional properties of leukocytes, redox parameters and DNA damage. The average GLY exposures of 128.6 (GLYHC), 213.7 (GLYLC), 1.3 (CONHC) and 2.0 µg/kg body weight/d (CONLC) did not lead to GLY effects for most of the assessed parameters relating to animal health and performance. CFP and time displayed marked influences on most of the experimental parameters such as higher dry matter intake and average daily gain in HC compared with the LC groups. GLY effects were rather weak. However, the observed interactive effects between GLY and CFP and/or time occurring in an inconsistent manner are likely not reproducible. Finally, all animals remained clinically inconspicuous, which brings into question the physiological relevance of putative GLY effects.

7.
JDS Commun ; 3(6): 451-455, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36465511

ABSTRACT

The onset of lactation represents a challenge for both mineral homeostasis and energy metabolism in high-performing dairy cows. It has been shown that subclinical and clinical hypocalcemia increases the risk of ketosis and recent studies suggest that bone-derived endocrine factors could play a role in intermediary metabolism. Therefore, we analyzed serum samples from calculated d -7, calculated d -3, d +1, d +3, and d +7 relative to calving from 15 multiparous cows for total Ca, the bone resorption marker CrossLaps, the bone formation marker intact osteocalcin, undercarboxylated osteocalcin (ucOC), insulin, glucose, nonesterified fatty acids, ß-hydroxybutyrate, and insulin-like growth factor 1. Serum concentrations of Ca on d -3 and d +1 were associated with parameters of energy metabolism on d +3 and d +7. As we found large variations for serum concentrations of ucOC already on d -7, we allocated the cows retrospectively to 3 groups: low ucOC, medium ucOC, and high ucOC. These groups differed not only in their ucOC dynamics, but also in insulin sensitivity estimated using the revised quantitative insulin sensitivity index (RQUICKI). High ucOC cows presented with the highest RQUICKI throughout the entire observation period. Our data further support the hypothesis that low serum Ca precedes disturbances of energy metabolism. Furthermore, from our preliminary results it can be assumed that the potential link between mineral homeostasis, bone turnover, and intermediary metabolism should be further investigated.

8.
Metabolites ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36557239

ABSTRACT

This study examined (1) if fatty acids in bovine hair are influenced by dietary energy levels and (2) if the relationship between energy availability and fatty acids in hair persists across breeds and farms. Sixty-two and 59 Fleckvieh (Simmental), and 55 German Holstein cows from three farms, respectively, were fed two levels of energy concentration of roughage (6.1 and 6.5 MJ net energy for lactation/kg dry matter) and two levels of concentrate supply (150 and 250 g/kg energy-corrected milk). The average body weight was 727 kg (Simmental) and 668 kg (Holstein). The average lactation number was 3.1. Hair samples were taken in lactation weeks 4 and 8. In Simmental cows, a lower energy deficit due to a relatively higher energy intake from high energy concentration of the roughage was associated with higher C18:2n-6 and C18:3n-3 contents in hair at week 8. In cows from all three farms, higher energy intake between lactation weeks 2 and 6 correlated with higher content of C18:2n-6 in hair samples taken in lactation weeks 4 and 8. No correlation was found for C12:0. These results provide the first evidence that increased energy intake increases the contents of C18:2n-6 in hair.

9.
J Pers Med ; 12(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36294792

ABSTRACT

(1) The aim of the present study was to compare the outcome of facial symmetry after simultaneous digitally planned patient-specific implant (PSI-) based orthognathic surgery and polyether ether ketone (PEEK) bone augmentation in patients with craniofacial malformations. (2) To evaluate the outcome of the two different surgical approaches (conventional PSI-based orthognathic surgery versus simultaneous PSI-based orthognathic surgery with PEEK bone augmentation), a comparison of five different groups with a combination of the parameters (A) with vs. without laterognathia, (B) syndromic vs. non-syndromic, and (C) surgery with vs. without PEEK bone augmentation was conducted. The digital workflow comprised cone beam CT (CBCT) scans and virtual surgery planning for all patients in order to produce patient specific cutting guides and osteosynthesis plates. Additionally, deformed skulls were superimposed by a non-deformed skull and/or the healthy side was mirrored to produce PSI PEEK implants for augmentation. Retrospective analyses included posterior-anterior conventional radiographs as well as en face photographs taken before and nine months after surgery. (3) Simultaneous orthognathic surgery with PEEK bone augmentation significantly improves facial symmetry compared to conventional orthognathic surgery (6.5%P (3.2-9.8%P) (p = 0.001). (4) PSI-based orthognathic surgery led to improved horizontal bone alignment in all patients. Simultaneous PEEK bone augmentation enhanced facial symmetry even in patients with syndrome-related underdevelopment of both soft and hard tissues.

10.
Front Immunol ; 13: 784046, 2022.
Article in English | MEDLINE | ID: mdl-35370999

ABSTRACT

In early lactation, an energy deficit leading to a negative energy balance (NEB) is associated with increased susceptibility to disease and has been shown to be an important factor during transition in dairy cows. L-carnitine as a key factor in the mitochondrial transport of fatty acids and subsequently for ß-oxidation and energy release is known to modulate mitochondrial biogenesis and thus influence metabolism and immune system. In the current study, we characterized hematological changes around parturition and investigated the potential effects of dietary L-carnitine supplementation on immune cell functions. For this approach, dairy cows were assigned either to a control (CON, n = 30) or an L-carnitine group [CAR, n = 29, 25 g rumen-protected L-carnitine per cow and day (d)]. Blood samples were taken from d 42 ante partum (ap) until d 110 post-partum (pp), with special focus and frequent sampling from 0.5 to72 h post-calving to clarify the impact of L-carnitine supplementation on leukocyte count, formation of reactive oxygen species (ROS) in polymorphonuclear cells (PMN) and peripheral mononuclear cells (PBMC) and their phagocytosis activity. Blood cortisol concentration and the capacity of PBMC proliferation was also investigated. All populations of leukocytes were changed during the peripartal period, especially granulocytes showed a characteristic increase up to 4 h pp. L-carnitine supplementation resulted in increased levels of eosinophils which was particularly pronounced one day before to 4 h pp, indicating a possible enhanced support for tissue repair and recovery. Non-supplemented cows showed a higher phagocytic activity in PBMC as well as a higher phagocytic capacity of PMN during the most demanding period around parturition, which may relate to a decrease in plasma levels of non-esterified fatty acids reported previously. L-carnitine, on the other hand, led to an increased efficiency to form ROS in stimulated PMN. Finally, a short period around calving proved to be a sensitive period in which L-carnitine administration was effective.


Subject(s)
Carnitine , Milk , Animals , Carnitine/pharmacology , Cattle , Dietary Supplements , Female , Leukocyte Count , Leukocytes, Mononuclear , Parturition/metabolism , Pregnancy , Reactive Oxygen Species
12.
Animals (Basel) ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203718

ABSTRACT

Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose-response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.

13.
Sci Rep ; 11(1): 12735, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140596

ABSTRACT

Metabolic consequences of an energy and protein rich diet can compromise metabolic health of cattle by promoting a pro-inflammatory phenotype. Laminitis is a common clinical sign, but affected metabolic pathways, underlying pathophysiology and causative relationships of a systemic pro-inflammatory phenotype are unclear. Therefore, the aim of this study was to elucidate changes in metabolome profiles of 20 months old Holstein bulls fed a high energy and protein diet and to identify novel metabolites and affected pathways, associated with diet-related laminitis. In a randomized controlled feeding trial using bulls fed a high energy and protein diet (HEP; metabolizable energy [ME] intake 169.0 ± 1.4 MJ/day; crude protein [CP] intake 2.3 ± 0.02 kg/day; calculated means ± SEM; n = 15) versus a low energy and protein diet (LEP; ME intake 92.9 ± 1.3 MJ/day; CP intake 1.0 ± 0.01 kg/day; n = 15), wide ranging effects of HEP diet on metabolism were demonstrated with a targeted metabolomics approach using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Multivariate statistics revealed that lower concentrations of phosphatidylcholines and sphingomyelins and higher concentrations of lyso-phosphatidylcholines, branched chain amino acids and aromatic amino acids were associated with an inflammatory state of diet-related laminitis in Holstein bulls fed a HEP diet. The latter two metabolites share similarities with changes in metabolism of obese humans, indicating a conserved pathophysiological role. The observed alterations in the metabolome provide further explanation on the underlying metabolic consequences of excessive dietary nutrient intake.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Cattle Diseases/blood , Hoof and Claw/pathology , Metabolome , Animals , Cattle , Cattle Diseases/etiology , Cattle Diseases/pathology , Male
14.
NPJ Biofilms Microbiomes ; 7(1): 30, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767196

ABSTRACT

Glyphosate-based herbicides are among the most used non-selective herbicides worldwide and inhibit synthesis of aromatic amino acids in plants, bacteria, and fungi. Given the broad usage, controversies concerning potential effects of glyphosate on health and especially on gut microbiomes arose. For cattle, it has been proposed based on in vitro data that glyphosate has detrimental effects on the ruminal microbiome, which manifest as a specific inhibition of bacteria involved in fiber degradation and as an enrichment of specific pathogens. In the present study, glyphosate effects on the ruminal microbiome were analyzed in vivo using glyphosate contaminated feedstuffs with strong differences in dietary fiber and dietary energy content in order to reproduce the proposed detrimental glyphosate effects on the rumen microbiome. While significant impact of dietary factors on the ruminal microbiome and its products are pointed out, no adverse glyphosate effects on ruminal microbiome composition, diversity, and microbial metabolites are observed.


Subject(s)
Animal Feed/analysis , Bacteria/classification , Dysbiosis/etiology , Glycine/analogs & derivatives , Herbicides/adverse effects , Rumen/microbiology , Sequence Analysis, DNA/methods , Animals , Bacteria/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Cattle , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Dietary Fiber/analysis , Dysbiosis/veterinary , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Glycine/adverse effects , Phylogeny , RNA, Ribosomal, 16S/genetics , Rumen/chemistry , Glyphosate
15.
Arch Anim Nutr ; 75(2): 79-104, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33641544

ABSTRACT

The climate-relevant enteric methane (CH4) formation represents a loss of feed energy that is potentially meaningful for energetically undersupplied peripartal dairy cows. Higher concentrate feed proportions (CFP) are known to reduce CH4 emissions in cows. The same applies to the feed additive 3-nitrooxypropanol (3-NOP), albeit through different mechanisms. It was hypothesised that the hydrogen not utilised for CH4 formation through the inhibition by 3-NOP would be sequestered by propionate formation triggered by higher CFP so that it could thereby give rise to a synergistically reduced CH4 emission. In a 2 × 2-factorial design, low (LC) or high (HC) CFP were either tested without supplements (CONLC, CONHC) or combined with 3-NOP (NOPLC, 48.4 mg/kg dry matter (DM); NOPHC, 51.2 mg 3-NOP/kg DM). These four rations were fed to a total of 55 Holstein cows from d 28 ante partum until d 120 post partum. DM intake (DMI) was not affected by 3-NOP but increased with CFP (CFP; p < 0.001). CH4/DMI and CH4/energy-corrected milk (ECM) were mitigated by 3-NOP (23% NOPLC, 33% NOPHC) (p < 0.001) and high CFP (12% CON, 22% 3-NOP groups) (CFP × TIME p < 0.001). Under the conditions of the present experiment, the CH4 emissions of NOPLC increased to the level of the CON groups from week 8 until the end of trial (3-NOP × CFP × TIME; p < 0.01). CO2 yield decreased by 3-NOP and high CFP (3-NOP × CFP; p < 0.001). The reduced body weight loss and feed efficiency in HC groups paralleled a more positive energy balance being most obvious in NOPHC (3-NOP × CFP; p < 0.001). ECM was lower for NOPHC compared to CONHC (3-NOP × CFP; p < 0.05), whereas LC groups did not differ. A decreased fat to protein ratio was observed in HC groups and, until week 6 post partum, in NOPLC. Milk lactose and urea increased by 3-NOP (3-NOP; p < 0.05). 3-NOP and high CFP changed rumen fermentation to a more propionic-metabolic profile (3-NOP; CFP; p < 0.01) but did not affect rumen pH. In conclusion, CH4 emission was synergistically reduced when high CFP was combined with 3-NOP while the CH4 mitigating 3-NOP effect decreased with progressing time when the supplement was added to the high-forage ration. The nature of these interactions needs to be clarified.


Subject(s)
Cattle/physiology , Fermentation , Lactation/drug effects , Methane/metabolism , Propanols/metabolism , Rumen/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Propanols/administration & dosage , Random Allocation
16.
PLoS One ; 16(2): e0246679, 2021.
Article in English | MEDLINE | ID: mdl-33577576

ABSTRACT

Glyphosate (GLY) is worldwide one of the most used active substances in non-selective herbicides. Although livestock might be orally exposed via GLY-contaminated feedstuffs, not much is known about possible hepatotoxic effects of GLY. As hepatic xenobiotic and nutrient metabolism are interlinked, toxic effects of GLY residues might be influenced by hepatic nutrient supply. Therefore, a feeding trial with lactating dairy cows was conducted to investigate effects of GLY-contaminated feedstuffs and different concentrate feed proportions (CFP) in the diets as tool for varying nutrient supply to the liver. For this, 61 German Holstein cows (207 ± 49 days in milk; mean ± standard deviation) were either fed a GLY-contaminated total mixed ration (TMR, GLY groups, mean GLY intake 122.7 µg/kg body weight/day) or control TMR (CON groups, mean GLY intake 1.2 µg/kg body weight/day) for 16 weeks. Additionally, both groups were further split into subgroups fed a lower (LC, 30% on dry matter basis) or higher (HC, 60% on dry matter basis) CFP resulting in groups CONHC (n = 16), CONLC (n = 16), GLYHC (n = 15), GLYLC (n = 14). Blood parameters aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, cholesterol, triglyceride, total protein, calcium, phosphorus, acetic acid and urea and histopathological evaluation were not influenced by GLY, whereas all mentioned parameters were at least affected by time, CFP or an interactive manner between time and CFP. Total bilirubin blood concentration was significantly influenced by an interaction between GLY and CFP with temporarily elevated concentrations in GLYHC, whereas the biological relevance remained unclear. Gene expression analysis indicated 167 CFP-responsive genes, while seven genes showed altered expression in GLY groups compared to CON groups. Since expression changes of GLY-responsive genes were low and liver-related blood parameters changed either not at all or only slightly, the tested GLY formulation was considered to have no toxic effects on the liver of dairy cows.


Subject(s)
Animal Feed/analysis , Dairying , Gene Expression Regulation , Glycine/analogs & derivatives , Liver/metabolism , Liver/pathology , Animals , Cattle , Gene Expression Regulation/drug effects , Glycine/toxicity , Liver/drug effects , Reproducibility of Results , Transcriptome/drug effects , Transcriptome/genetics , Glyphosate
17.
Arch Anim Nutr ; 75(1): 1-17, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33475009

ABSTRACT

Respiration experiments with high-yielding dairy cows in Northern Ireland have shown higher energy maintenance requirements than those used in the requirements standards of, e.g. France, UK, USA and Germany. Therefore, the current net energy for lactation (NEL) system of Germany was tested by comparing measured NEL intake with calculated NEL requirements based on a comprehensive dataset from feeding trials conducted at nine research institutions in Germany, Austria and Switzerland. The relationship between NEL requirements and NEL intake is described by the equation: N E L r e q u i r e m e n t s M J / d = 26 . 6 ± 0 . 4 + 0 . 82 ± 0 . 004 ⋅ N E L i n t a k e M J / d w i t h C o e f f i c i e n t   o f   D e t e r m i n a t i o n   R 2 = 0 . 677 , R o o t   M e a n   S q u a r e   E r r o r   R M S E   = 15 . 9   M J   N E L . The equation indicates a systematic over-estimation of NEL requirements in the lower performance range and an under-estimation at higher energy intake levels. A multiple regression analysis was conducted by calculating metabolisable energy (ME) requirements [MJ/d] using metabolic body size (MBS) [kg0.75], milk energy performance (LE) [MJ/d] and body weight change (BWC) [kg/d]: ​ ​ ​ ​ ​ ​ ​ ME intake ( MEI ) [ MJ ] =0 . 651 ( ± 0 . 004 ) ⋅ MBS+1 . 37 ( ± 0 . 006 ) ⋅ LE + 16 . 6 ( ± 0 . 31 ) ⋅ BWC with R 2 = 0. 717 , RMSE=24 . 0 MJ . These results indicate that the energy maintenance requirements are markedly higher than presumed in the feed evaluation systems commonly in use but confirm the results from Northern Ireland (0.600-0.660 MJ ME/kg0.75 MBS). ME efficiency for lactation is also higher (kL = 1/1.37 = 0.73) than that used in the systems and is also similar to the results of Northern Ireland with 0.64-0.69. The energy contribution of BWC derived by this equation is 12.1 MJ/kg (16.6 · 0.73) and distinctly lower than that of 21-25 MJ/kg presumed by the feeding standards, e.g. in Germany. Further, maintenance requirements were linked to milk yield (energy corrected milk (ECM) [kg/d]), as is practiced in the standard Australian energy system: ​ ​ ​ ​ ​ ​ ​ ( MEI ) [ MJ ] =0 . 640  + 0 . 0070 ⋅  ECM) ] ⋅ MBS+1 . 12) ⋅ LE + 16 . 7 ⋅  BWC with R 2 = 0. 719 , RMSE=24 . 0 MJ . These results demonstrate that maintenance energy requirements are partly dependent on milk yield. A differentiated analysis by stage of lactation showed that the regressions coefficients for MBS, LE and BWC change with lactation month; however, these findings apply especially to the first lactation months (i.e. in phases of intensive mobilisation).


Subject(s)
Cattle/physiology , Diet , Energy Intake , Energy Metabolism , Lactation , Animal Nutritional Physiological Phenomena , Animals , Dairying , Female , Germany
18.
Animals (Basel) ; 11(1)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435209

ABSTRACT

l-carnitine plays an important role in energy metabolism through supporting the transport of activated fatty acids to the subcellular site of ß-oxidation. An acute phase reaction (APR) is known as an energy consuming process. Lipopolysaccharides (LPS) are often used in animal models to study intervention measures during innate immune responses such as APR. Thus, the aim of the study was to investigate the effects of dietary l-carnitine supplementation during an LPS-induced APR in mid-lactating German Holstein cows. Animals were assigned to a control (CON, n = 26) or l-carnitine group (CAR, n = 27, 25 g rumen-protected l-carnitine/cow/d) and received an intravenous injection of LPS (0.5 µg/kg body weight) at day 111 post-partum. Blood samples were collected from day 1 pre-injection until day 14 post-injection (pi). From 0.5 h pi until 72 h pi blood samplings and clinical examinations were performed in short intervals. Clinical signs of the APR were not altered in group CAR except rumen motility which increased at a lower level compared to the CON group after a period of atonia. Group CAR maintained a higher insulin level compared to group CON even up to 72 h pi which might support glucose utilization following an APR.

19.
Animals (Basel) ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353097

ABSTRACT

Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.

20.
Animals (Basel) ; 10(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266165

ABSTRACT

The present study aimed at evaluating the influences of different concentrate feed proportions in the ration offered to dairy cows post partum with different body condition scores (BCS) before calving. Therefore, 60 pluriparous cows were divided 42 days before expected calving into two groups with a higher or an adequate BCS. After calving, both groups were further subdivided into a group fed a ration with either a low concentrate feed proportion (C, 35% at dry matter basis) or a high (60% at dry matter basis) one. It was hypothesized that different BCS would lead to different reactions concerning varying concentrate feed proportions. Isolated BCS effects were detected in the white blood profile only before calving. Neither low nor high concentrate feed proportions affected hematological, blood immune cell phenotypes and inflammatory markers consistently irrespective of BCS group. It was concluded, that the assessed BCS span covered a range in which the capability of cows to cope with different dietary post partum energy supply remained unchanged.

SELECTION OF CITATIONS
SEARCH DETAIL
...