Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Macromol Rapid Commun ; 38(10)2017 May.
Article in English | MEDLINE | ID: mdl-28345148

ABSTRACT

A self-healable gas barrier nanocoating, which is fabricated by alternate deposition of polyethyleneimine (PEI) and polyacrylic acid (PAA) polyelectrolytes, is demonstrated in this study. This multilayer film, with high elastic modulus, high glass transition temperature, and small free volume, has been shown to be a super oxygen gas barrier. An 8-bilayer PEI/PAA multilayer assembly (≈700 nm thick) exhibits an oxygen transmission rate (OTR) undetectable to commercial instrumentation (<0.005 cc (m-2 d-1 atm-1 )). The barrier property of PEI/PAA nanocoating is lost after a moderate amount of stretching due to its rigidity, which is then completely restored after high humidity exposure, therefore achieving a healing efficiency of 100%. The OTR of the multilayer nanocoating remains below the detection limit after ten stretching-healing cycles, which proves this healing process to be highly robust. The high oxygen barrier and self-healing behavior of this polymer multilayer nanocoating makes it ideal for packaging (food, electronics, and pharmaceutical) and gas separation applications.


Subject(s)
Nanotechnology , Oxygen/chemistry , Polyelectrolytes/chemistry , Product Packaging/methods , Acrylic Resins/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry
2.
ACS Appl Mater Interfaces ; 8(48): 33210-33220, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27934160

ABSTRACT

Large-scale industrial applications of barrier films and coatings that prevent permeation of degradative gases and moisture call for the development of cost-efficient and ecofriendly polymer nanocomposites. Herein, we report the facile fabrication of latex nanocomposites (LNCs) by incorporating surface-modified graphene oxide (mGO) at various loadings (0.025-1.2 wt %) into a styrene-acrylic latex using water as the processing solvent. LNCs fabricated with mGO exhibited significant reductions (up to 67%) in water vapor sorption, resulting in greater environmental stability when compared to LNCs fabricated with equivalent loading of hydrophilic, unmodified GO. The assembly and coalescence of the exfoliated latex/mGO dispersions during the film formation process produced highly dispersed and well-ordered mGO domains with high aspect ratios, where alignment and overlap of the mGO domains improved with increasing mGO content. The addition of only 0.7 vol % (1.2 wt %) mGO led to an 84% decrease (relative to the neat polymer latex film) in oxygen permeability of the LNC films, an excellent barrier performance attributed to the observed LNC film morphologies. This work enables ecofriendly development of mechanically flexible mGO/LNC films with superior barrier properties for many industrial applications including protective coatings, food packaging, and biomedical products.

SELECTION OF CITATIONS
SEARCH DETAIL