Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Commun ; 15(1): 3201, 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38615046

Yttrium iron garnet, a material possessing ultralow magnetic damping and extraordinarily long magnon diffusion length, is the most widely studied magnetic insulator in spintronics and magnonics. Field-free electrical control of perpendicular yttrium iron garnet magnetization with considerable efficiency is highly desired for excellent device performance. Here, we demonstrate such an accomplishment with a collinear spin current, whose spin polarization and propagation direction are both perpendicular to the interface. Remarkably, the field-free magnetization switching is achieved not only with a heavy-metal-free material, Permalloy, but also with a higher efficiency as compared with a typical heavy metal, Pt. Combined with the direct and inverse effect measurements, we ascribe the collinear spin current to the anomalous spin Hall effect in Permalloy. Our findings provide a new insight into spin current generation in Permalloy and open an avenue in spintronic devices.

2.
Nano Lett ; 23(17): 8171-8179, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37638840

Despite its important role in understanding ultrafast spin dynamics and revealing novel spin/orbit effects, the mechanism of the terahertz (THz) emission from a single ferromagnetic nanofilm upon a femtosecond laser pump still remains elusive. Recent experiments have shown exotic symmetry, which is not expected from the routinely adopted mechanism of ultrafast demagnetization. Here, by developing a bidirectional pump-THz emission spectroscopy and associated symmetry analysis method, we set a benchmark for the experimental distinction of the THz emission induced by various mechanisms. Our results unambiguously unveil a new mechanism─anomalous Nernst effect (ANE) induced THz emission due to the ultrafast temperature gradient created by a femtosecond laser. Quantitative analysis shows that the THz emission exhibits interesting thickness dependence where different mechanisms dominate at different thickness ranges. Our work not only clarifies the origin of the ferromagnetic-based THz emission but also offers a fertile platform for investigating the ultrafast optomagnetism and THz spintronics.

3.
Nat Commun ; 11(1): 1400, 2020 Mar 16.
Article En | MEDLINE | ID: mdl-32179742

The quantum mirage effect is a fascinating phenomenon in fundamental physics. Landmark experiments on quantum mirages reveal atomic-scale transport of information with potential to remotely probe atoms or molecules with minimal perturbation. Previous experimental investigations are Kondo-effect based; the quantum mirages appear only near the Fermi energy. This strongly limits the exploration of the mechanism and potential application. Here we demonstrate a Kondo-free quantum mirage that operates in a wide energy range beyond Fermi energy. Together with an analytical model, our systematic investigations identify that the quantum mirage is the result of quantum interference of the onsite electronic states with those scattered by the adatom at the focus of elliptical quantum corrals, where two kinds of scattering paths are of critical importance. Moreover, we also demonstrate the manipulation of quantum mirages with pseudo basic logic operations, such as NOT, FANOUT and OR gates.

4.
Sci Adv ; 4(6): eaat1670, 2018 06.
Article En | MEDLINE | ID: mdl-29942861

Spin Hall angle (θSH) and spin diffusion length (λsd) are the key parameters in describing the spin-charge conversion, which is an integral part of spintronics. Despite their importance and much effort devoted to quantifying them, significant inconsistencies in the reported values for the same given material exist. We report a self-consistent method to quantify both θSH and λsd of nonmagnetic materials by spin pumping with various ferromagnetic (FM) pumping sources. We characterize the spin-charge conversion for Pt and Pd with various FM combinations using (i) effective spin-mixing conductance, (ii) microwave photoresistance, and (iii) inverse spin Hall effect measurements and find that the pumped spin current suffers an interfacial spin loss (ISL), whose magnitude varies for different interfaces. By properly treating the ISL effect, we obtained consistent values of θSH and λsd for both Pt and Pd regardless of the ferromagnet used.

...