Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1423586, 2024.
Article in English | MEDLINE | ID: mdl-39027670

ABSTRACT

High sugar content in peanut seeds is one of the major breeding objectives for peanut flavor improvement. In order to explore the genetic control of sugar accumulation in peanut kernels, we constructed a recombinant inbred line population of 256 F2:6-7 lines derived from the Luhua11 × 06B16 cross. A high-resolution genetic map was constructed with 3692 bin markers through whole genome re-sequencing. The total map distance was 981.65 cM and the average bin marker distance was 0.27cM. A major stable QTL region (qSCB09/qSSCB09) was identified on linkage group (LG) B09 associated with both sucrose content (SC) and soluble sugar content (SSC) explaining 21.51-33.58% phenotypic variations. This major QTL region was consistently detected in three environments and mapped within a physical interval of 1.56 Mb on chromosome B09, and six candidate genes were identified. These results provide valuable information for further map-based cloning of favorable allele for sugar content in peanut.

2.
BMC Plant Biol ; 24(1): 425, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769518

ABSTRACT

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. However, soil salinization becomes one of the main limiting factors of peanut production. Therefore, developing salt-tolerant varieties and understanding the molecular mechanisms of salt tolerance is important to protect peanut yield in saline areas. In this study, we selected four peanut varieties with contrasting response to salt challenges with T1 and T2 being tolerance and S1 and S2 being susceptible. High-throughput RNA sequencing resulted in more than 314.63 Gb of clean data from 48 samples. We identified 12,057 new genes, 7,971of which have functional annotations. KEGG pathway enrichment analysis of uniquely expressed genes in salt-tolerant peanut revealed that upregulated genes in the root are involved in the MAPK signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and upregulated genes in the shoot were involved in plant hormone signal transduction and the MAPK signaling pathway. Na+ content, K+ content, K+/ Na+, and dry mass were measured in root and shoot tissues, and two gene co-expression networks were constructed based on weighted gene co-expression network analysis (WGCNA) in root and shoot. In this study, four key modules that are highly related to peanut salt tolerance in root and shoot were identified, plant hormone signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, carbon metabolism were identified as the key biological processes and metabolic pathways for improving peanut salt tolerance. The hub genes include genes encoding ion transport (such as HAK8, CNGCs, NHX, NCL1) protein, aquaporin protein, CIPK11 (CBL-interacting serine/threonine-protein kinase 11), LEA5 (late embryogenesis abundant protein), POD3 (peroxidase 3), transcription factor, and MAPKKK3. There were some new salt-tolerant genes identified in peanut, including cytochrome P450, vinorine synthase, sugar transport protein 13, NPF 4.5, IAA14, zinc finger CCCH domain-containing protein 62, beta-amylase, fatty acyl-CoA reductase 3, MLO-like protein 6, G-type lectin S-receptor-like serine/threonine-protein kinase, and kinesin-like protein KIN-7B. The identification of key modules, biological pathways, and hub genes in this study enhances our understanding of the molecular mechanisms underlying salt tolerance in peanuts. This knowledge lays a theoretical foundation for improving and innovating salt-tolerant peanut germplasm.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Gene Regulatory Networks , Salt Tolerance , Arachis/genetics , Arachis/physiology , Arachis/metabolism , Salt Tolerance/genetics , Salt Stress/genetics , Genes, Plant , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Profiling
3.
BMC Plant Biol ; 19(1): 537, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31795931

ABSTRACT

BACKGROUND: The cultivated peanut is an important oil and cash crop grown worldwide. To meet the growing demand for peanut production each year, genetic studies and enhanced selection efficiency are essential, including linkage mapping, genome-wide association study, bulked-segregant analysis and marker-assisted selection. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for high density genetic map (HDGM) construction and quantitative trait loci (QTLs) mapping. In this study, a HDGM was constructed using SLAF-seq leading to identification of QTL for seed weight and size in peanut. RESULTS: A recombinant inbred line (RIL) population was advanced from a cross between a cultivar 'Huayu36' and a germplasm line '6-13' with contrasting seed weight, size and shape. Based on the cultivated peanut genome, a HDGM was constructed with 3866 loci consisting of SLAF-seq and simple sequence repeat (SSR) markers distributed on 20 linkage groups (LGs) covering a total map distance of 1266.87 cM. Phenotypic data of four seed related traits were obtained in four environments, which mostly displayed normal distribution with varied levels of correlation. A total of 27 QTLs for 100 seed weight (100SW), seed length (SL), seed width (SW) and length to width ratio (L/W) were identified on 8 chromosomes, with LOD values of 3.16-31.55 and explaining phenotypic variance (PVE) from 0.74 to 83.23%. Two stable QTL regions were identified on chromosomes 2 and 16, and gene content within these regions provided valuable information for further functional analysis of yield component traits. CONCLUSIONS: This study represents a new HDGM based on the cultivated peanut genome using SLAF-seq and SSRs. QTL mapping of four seed related traits revealed two stable QTL regions on chromosomes 2 and 16, which not only facilitate fine mapping and cloning these genes, but also provide opportunity for molecular breeding of new peanut cultivars with improved seed weight and size.


Subject(s)
Arachis/genetics , Quantitative Trait Loci , Seeds/growth & development , Arachis/growth & development , Chromosome Mapping , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL