Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
BMC Genom Data ; 25(1): 68, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982354

ABSTRACT

The recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array. The identified ROH segments were included simultaneously, concatenated into consensus regions, and the ROH-based association studies were carried out with linear mixed models considering a genomic relationship matrix for 11 growth and feed efficiency traits implemented in ASReml-R version 4. In total, 298,313 ROH were identified across all individuals, with an average length and coverage of 4.16 Mb and 414.8 Mb, respectively. After merging ROH segments, 196 consensus ROH regions were detected and used for genome-wide ROH-based association analysis. Thirteen consensus ROH regions were significantly (P < 0.01) associated with growth and feed efficiency traits. Several candidate genes within the significant regions are known for their involvement in growth and body size development, including MEF2A, ADAMTS17, POU3F2, and TYRO3. In addition, we found ten consensus ROH regions, defined as ROH islands, with frequencies over 80% of the population. These islands harbored 12 annotated genes, some of which were related to immune system processes such as DTX3L, PARP9, PARP14, CD86, and HCLS1. This is the first study to explore the associations between homozygous regions with growth and feed efficiency traits in American mink. Our findings shed the light on the effects of homozygosity in the mink genome on growth and feed efficiency traits, that can be utilized in developing a sustainable breeding program for mink.


Subject(s)
Homozygote , Mink , Polymorphism, Single Nucleotide , Animals , Mink/genetics , Mink/growth & development , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study/veterinary , Animal Feed , Phenotype
2.
Front Genet ; 15: 1370891, 2024.
Article in English | MEDLINE | ID: mdl-39071778

ABSTRACT

Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures. This study aimed to identify selection signatures for immune response (IRE) and resilience to AD. A total of 1,411 mink from an AD-positive facility were used. For IRE, 264 animals were categorized according to the combined results of enzyme-linked immunosorbent assay (ELISA) and counterimmunoelectrophoresis (CIEP). For resilience, two grouping methods were used: 1) general resilience performance (GRP, n = 30) was evaluated based on the feed conversion ratio, Kleiber ratio, and pelt quality; and 2) female reproductive performance (FRP, n = 36) was measured based on the number of kits alive 24 h after birth. Detection methods were the pairwise fixation index, nucleotide diversity, and cross-population extended haplotype homozygosity. A total of 619, 569, and 526 SNPs were identified as candidates for IRE, GRP, and FRP, respectively. The annotated genes were involved in immune system process, growth, reproduction, and pigmentation. Two olfactory-related Gene Ontology (GO) terms were significant (q < 0.05) for all traits, suggesting the impact of AD on the sense of smell of infected mink. Differences in detected genes and GO terms among different color types for IRE indicated variations in immune response to AD among color types. The mitogen-activated protein kinase (MAPK) signaling pathway was significant (q < 0.05) for FRP, suggesting that AD may disrupt MAPK signaling and affect FRP. The findings of this research contribute to our knowledge of the genomic architecture and biological mechanisms underlying AD resilience in mink.

3.
J Anim Breed Genet ; 141(5): 507-520, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38389405

ABSTRACT

The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.


Subject(s)
Homozygote , Mink , Whole Genome Sequencing , Animals , Mink/genetics , Polymorphism, Single Nucleotide , Animal Fur
4.
Sci Rep ; 14(1): 24, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167844

ABSTRACT

Copy number variations (CNVs) are structural variants consisting of duplications and deletions of DNA segments, which are known to play important roles in the genetics of complex traits in livestock species. However, CNV-based genome-wide association studies (GWAS) have remained unexplored in American mink. Therefore, the purpose of the current study was to investigate the association between CNVs and complex traits in American mink. A CNV-based GWAS was performed with the ParseCNV2 software program using deregressed estimated breeding values of 27 traits as pseudophenotypes, categorized into traits of growth and feed efficiency, reproduction, pelt quality, and Aleutian disease tests. The study identified a total of 10,137 CNVs (6968 duplications and 3169 deletions) using the Affymetrix Mink 70K single nucleotide polymorphism (SNP) array in 2986 American mink. The association analyses identified 250 CNV regions (CNVRs) associated with at least one of the studied traits. These CNVRs overlapped with a total of 320 potential candidate genes, and among them, several genes have been known to be related to the traits such as ARID1B, APPL1, TOX, and GPC5 (growth and feed efficiency traits); GRM1, RNASE10, WNT3, WNT3A, and WNT9B (reproduction traits); MYO10, and LIMS1 (pelt quality traits); and IFNGR2, APEX1, UBE3A, and STX11 (Aleutian disease tests). Overall, the results of the study provide potential candidate genes that may regulate economically important traits and therefore may be used as genetic markers in mink genomic breeding programs.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Animals , DNA Copy Number Variations/genetics , Mink/genetics , Genotype , Genome , Polymorphism, Single Nucleotide
5.
Vaccine ; 41(49): 7387-7394, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37932134

ABSTRACT

Currently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned. This study investigates the post-vaccination antibody response in the Canadian farmed mink vaccinated with a commercial Index spike protein-based vaccine, approved for use in cats, and compares the antibody response to that observed post infection in Danish farmed mink. Blood samples were obtained from 50 mink at the Canadian Centre for Fur Animal Research (CCFAR), Dalhousie University (Truro, Canada). The sera were initially analyzed for antibodies by enzyme-linked immunosorbent assay (ELISA), and selected sera was subsequently tested in a virus neutralization tests. The levels of neutralizing antibodies were evaluated for an ancestral D614G strain and a recent circulating SARS-CoV-2 variant of concern (Omicron BA.4). The results revealed that the vaccine induced a strong antibody response in mink by reaching antibody titer levels of up to 1:12800 in the ELISA. Moreover, high levels of neutralizing antibodies were obtained, and despite the great level of genetic differences between the ancestral and Omicron BA.4 strains, the vaccinated mink showed high levels of cross-reacting neutralizing antibodies. Interestingly, the antibody levels towards SARS-CoV-2 in the Canadian vaccinated mink were significantly higher than observed in recently SARS-CoV-2 infected Danish mink and equal to anamnestic responses following re-infection. In conclusion, the vaccine used in the Canadian farmed mink was able to induce a strong and broad-reacting antibody response in mink, which could limit the spread of SARS-CoV-2 in farmed mink and thereby reduce the risk of mink serving as a SARS-CoV-2 reservoir for human infections.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Cats , Antibody Formation , Canada , Mink , SARS-CoV-2 , Vaccination/veterinary , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
Front Genet ; 14: 1221683, 2023.
Article in English | MEDLINE | ID: mdl-37274782

ABSTRACT

[This corrects the article DOI: 10.3389/fgene.2023.1175408.].

7.
Front Genet ; 14: 1175408, 2023.
Article in English | MEDLINE | ID: mdl-37274788

ABSTRACT

Understanding the genetic structure of the target population is critically important to develop an efficient genomic selection program in domestic animals. In this study, 2,973 American mink of six color types from two farms (Canadian Centre for Fur Animal Research (CCFAR), Truro, NS and Millbank Fur Farm (MFF), Rockwood, ON) were genotyped with the Affymetrix Mink 70K panel to compute their linkage disequilibrium (LD) patterns, effective population size (Ne), genetic diversity, genetic distances, and population differentiation and structure. The LD pattern represented by average r 2, decreased to <0.2 when the inter-marker interval reached larger than 350 kb and 650 kb for CCFAR and MFF, respectively, and suggested at least 7,700 and 4,200 single nucleotide polymorphisms (SNPs) be used to obtain adequate accuracy for genomic selection programs in CCFAR and MFF respectively. The Ne for five generations ago was estimated to be 76 and 91 respectively. Our results from genetic distance and diversity analyses showed that American mink of the various color types had a close genetic relationship and low genetic diversity, with most of the genetic variation occurring within rather than between color types. Three ancestral genetic groups was considered the most appropriate number to delineate the genetic structure of these populations. Black (in both CCFAR and MFF) and pastel color types had their own ancestral clusters, while demi, mahogany, and stardust color types were admixed with the three ancestral genetic groups. This study provided essential information to utilize the first medium-density SNP panel for American mink in their genomic studies.

8.
BMC Genomics ; 24(1): 234, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37138242

ABSTRACT

BACKGROUND: Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink. METHODS: In this study, we analyzed the pedigree of 23,282 mink extending up to 16 generations. All animals that were raised at the Canadian Center for Fur Animal Research (CCFAR) from 2003 to 2021 were used in this study. We utilized the Mendelian ratio and Chi-square test to investigate the inheritance of Dark (9,100), Pastel (5,161), Demi (4,312), and Mahogany (3,358) colors in American mink. RESULTS: The Mendelian inheritance ratios of 1:1 and 3:1 indicated heterozygous allelic pairs responsible for all studied colors. Mating sire and dam of the same color resulted in the production of offspring with the same color most of the time. CONCLUSION: Overall, the results suggested that color inheritance was complex and subjected to a high degree of diversity in American mink as the genes responsible for all four colors were found to be heterozygous.


Subject(s)
Inheritance Patterns , Mink , Animals , Mink/genetics , Canada , Reproduction
9.
Anim Nutr ; 13: 64-77, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37009073

ABSTRACT

As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.

10.
Commun Biol ; 5(1): 1381, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526733

ABSTRACT

Availability of a contiguous chromosome-level genome assembly is the foundational step to develop genome-based studies in American mink (Neogale vison). The main objective of this study was to provide a high quality chromosome-level genome assembly for American mink. An initial draft of the genome assembly was generated using 2,884,047 PacBio long reads. Integration of Hi-C data into the initial draft led to an assembly with 183 scaffolds and scaffold N50 of 220 Mb. This gap-free genome assembly of American mink (ASM_NN_V1) had a length of 2.68 Gb in which about 98.6% of the whole genome was covered by 15 chromosomes. In total, 25,377 genes were predicted across the American mink genome using the NCBI Eukaryotic Genome Annotation Pipeline. In addition, gene orthology, demographic history, synteny blocks, and phylogenetic relationships were studied in connection with the genomes of other related Carnivora. Furthermore, population-based statistics of 100 sequenced mink were presented using the newly assembled genome. Remarkable improvements were observed in genome contiguity, the number of scaffolds, and annotation compared to the first draft of mink genome assembly (NNQGG.v01). This high-quality genome assembly will support the development of efficient breeding strategies as well as conservation programs for American mink.


Subject(s)
Genome , Mink , Animals , Mink/genetics , Phylogeny , Chromosomes/genetics , Genomics
11.
Animals (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36428411

ABSTRACT

Understanding the genetics of fur characteristics and skin size is important for developing effective breeding programs in the mink industry. Therefore, the objectives of this study were to estimate the genetic and phenotypic parameters for pelt quality traits including live grading overall quality (LQU), live grading nap size (LNAP), dried pelt size (DPS), dried pelt nap size (DNAP) and overall quality of dried pelt (DQU), and body length and weight traits, including November body weight (Nov_BW), November body length (Nov_BL), harvest weight (HW) and harvest length (HL) in American mink. Dried pelt quality traits on 1195 mink and pelt quality traits on live animals on 1680 were collected from mink raised at two farms, in Nova Scotia and Ontario. A series of univariate analyses were implemented in ASReml 4.1 software to identify the significance (p < 0.05) of random effects (maternal genetic effects, and common litter effects) and fixed effects (farm, sex, color type, year, and age) for each trait. Subsequently, bivariate models were used to estimate the genetic and phenotypic parameters using ASReml 4.1. Heritability (±SE) estimates were 0.41 ± 0.06 for DPS, 0.23 ± 0.10 for DNAP, 0.12 ± 0.04 for DQU, 0.28 ± 0.06 for LQU, 0.44 ± 0.07 for LNAP, 0.29 ± 0.10 for Nov_BW, 0.28 ± 0.09 for Nov_BL, 0.41 ± 0.07 for HW and 0.31 ± 0.06 for HL. DPS had high positive genetic correlations (±SE) with Nov_BW (0.89 ± 0.10), Nov_BL (0.81 ± 0.07), HW (0.85 ± 0.05) and HL (0.85 ± 0.06). These results suggested that body weight and length measured on live animals in November of the first year were reliable indicators of dried pelt size. DQU had favorable genetic correlations with Nov_BL (0.55 ± 0.24) and HL (0.46 ± 0.20), and nonsignificant genetic correlations with DNAP (0.13 ± 0.25), Nov_BW (0.25 ± 0.25) and HW (0.06 ± 0.20), which made body length traits an appealing trait for selection for increased pelt size. High positive genetic correlation (±SE) was observed between LNAP and DNAP (0.82 ± 0.22), which revealed that nap size measurement on live animals is a reliable indicator trait for dried pelt nap size. However, nonsignificant (p > 0.05) low genetic correlation (±SE) was obtained between LQU and DQU (0.08 ± 0.45), showing that indirect selection based on live grading might not lead to the satisfactory improvement of dried pelt overall quality. The estimated genetic parameters for live grading, dried pelt quality, and body weight and body length traits may be incorporated into breeding programs to improve fur characteristics in Canadian mink populations.

12.
Genes (Basel) ; 13(11)2022 10 25.
Article in English | MEDLINE | ID: mdl-36360176

ABSTRACT

Domestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada). Measurements of three dried pelt characteristics (including pelt size (n = 35), overall quality of fur (n = 27), and nap size (n = 29)), and three coat color of Black, Stardust, and Pastel (Stardust_ Black (n = 38), and Pastel_Black (n = 41)) were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (Fst), extended haplotype homozygosity (XP-EHH), and nucleotide diversity (θπ) tests. In total, overlapping top 1% of Fst and XP-EHH harbored 376 genes for pelt quality traits (110 for nap size, 163 for overall quality of fur, and 98 pelt size), and 194 genes for coat color (123 for Pastel_Black and 71 for Stardust_Black) were detected in different groups. Integrating results of Fst, and XP-EHH with the θπ test supported 19 strongly selected regions on chromosomes 3, 4, 5, 6, 7, 8, 9, and 10 that contained 33 candidate genes related to fur quality, hair follicle function, and pelt size traits. Gene ontology revealed numerous genes related to the hair cycle process and molting cycle process, epidermis development, Wnt signaling pathway and muscle development. This study provided the first map of putative selection signals related to pelt quality and coat color in American mink, which could be used as a reference for future studies attempting to identify genes associated with economically important traits in mink.


Subject(s)
Genome , Mink , Animals , Mink/genetics , Canada , Phenotype , Body Size/genetics
13.
J Anim Sci ; 100(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36250683

ABSTRACT

The ineffectiveness of vaccination, medicine, and culling strategy leads mink farmers to control Aleutian disease (AD) by selecting AD-resilient mink based on AD tests. However, the genetic background of AD tests and their correlations with economically important or AD-resilient traits are limited. This study estimated the genetic and phenotypic correlations between four AD tests and seven body weight (BW) traits, six growth parameters from the Richards growth model, and eight feed-related traits. Univariate models were used to test the significance (P < 0.05) of fixed effects (sex, color type, AD test year, birth year, and row-by-year), random effects (additive genetic, maternal genetic, and permanent environmental), and a covariate of age using ASReml 4.1. Likewise, pairwise bivariate analyses were conducted to estimate the phenotypic and genetic correlations among the studied traits. Both antigen- and virus capsid protein-based enzyme-linked immunosorbent assay tests (ELISA-G and ELISA-P) showed significant (P < 0.05) moderate positive genetic correlations (±SE) with maturation rate (from 0.36 ± 0.18 to 0.38 ± 0.19). ELISA-G showed a significant negative genetic correlation (±SE) with average daily gain (ADG, -0.37 ± 0.16). ELISA-P showed a significant positive moderate genetic correlation (±SE) with off-feed days (DOF, 0.42 ± 0.17). These findings indicated that selection for low ELISA scores would reduce the maturation rate, increase ADG (by ELISA-G), and minimize DOF (by ELISA-P). The iodine agglutination test (IAT) showed significant genetic correlations with DOF (0.73 ± 0.16), BW at 16 weeks of age (BW16, 0.45 ± 0.23), and BW at harvest (HW, -0.47 ± 0.20), indicating that selection for lower IAT scores would lead to lower DOF and BW16, and higher HW. These estimated genetic correlations suggested that the selection of AD tests would not cause adverse effects on the growth, feed efficiency, and feed intake of mink. The estimates from this study might strengthen the previous finding that ELISA-G could be applied as a reliable and practical indicator trait in the genetic selection of AD-resilient mink in AD-positive farms.


The selection of Aleutian disease-resistant individuals based on Aleutian disease (AD) tests is seen as a potential method to control AD effectively. However, the knowledge regarding the genetic background of AD tests is limited. This study estimated the genetic and phenotypic correlations between Aleutian disease tests and body weight, growth, and feed-related traits in mink. The estimates in this study indicated that the growth, feed efficiency, and feed intake of mink would not be adversely influenced by the selection of AD tests. In the meantime, the estimates further illustrate that the antigen-based enzyme-linked immunosorbent assay test could be applied as the most reliable and practical indicator trait to select AD-resilient mink in AD-positive farms.


Subject(s)
Aleutian Mink Disease , Mink , Animals , Mink/genetics , Aleutian Mink Disease/genetics , Body Weight/genetics , Phenotype , Eating
14.
BMC Genomics ; 23(1): 649, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36096727

ABSTRACT

BACKGROUND: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS: A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS: This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.


Subject(s)
DNA Copy Number Variations , Mink , Animals , Chromosome Mapping , Fibroblast Growth Factors/genetics , Genome , Mink/genetics , Whole Genome Sequencing
15.
Animals (Basel) ; 12(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139246

ABSTRACT

American mink (Neogale vison) is one of the major sources of fur for the fur industries worldwide, whereas Aleutian disease (AD) is causing severe financial losses to the mink industry. A counterimmunoelectrophoresis (CIEP) method is commonly employed in a test-and-remove strategy and has been considered a gold standard for AD tests. Although machine learning is widely used in livestock species, little has been implemented in the mink industry. Therefore, predicting AD without using CIEP records will be important for controlling AD in mink farms. This research presented the assessments of the CIEP classification using machine learning algorithms. The Aleutian disease was tested on 1157 individuals using CIEP in an AD-positive mink farm (Nova Scotia, Canada). The comprehensive data collection of 33 different features was used for the classification of AD-infected mink. The specificity, sensitivity, accuracy, and F1 measure of nine machine learning algorithms were evaluated for the classification of AD-infected mink. The nine models were artificial neural networks, decision tree, extreme gradient boosting, gradient boosting method, K-nearest neighbors, linear discriminant analysis, support vector machines, naive bayes, and random forest. Among the 33 tested features, the Aleutian mink disease virus capsid protein-based enzyme-linked immunosorbent assay was found to be the most important feature for classifying AD-infected mink. Overall, random forest was the best-performing algorithm for the current dataset with a mean sensitivity of 0.938 ± 0.003, specificity of 0.986 ± 0.005, accuracy of 0.962 ± 0.002, and F1 value of 0.961 ± 0.088, and across tenfold of the cross-validation. Our work demonstrated that it is possible to use the random forest algorithm to classify AD-infected mink accurately. It is recommended that further model tests in other farms need to be performed and the genomic information needs to be used to optimize the model for implementing machine learning methods for AD detection.

16.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35801647

ABSTRACT

Feed cost is the largest expense of mink production systems, and, therefore, improvement of feed efficiency (FE) through selection for high feed-efficient mink is a practical way to increase the mink industry's sustainability. In this study, we estimated the heritability, phenotypic, and genetic correlations for different FE measures and component traits, including harvest weight (HW), harvest length (HL), final body length (FBL), final body weight (FBW), average daily gain (ADG), daily feed intake (DFI), feed conversion ratio (FCR), residual feed intake (RFI), residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR), using data from 2,288 American mink (for HW and HL), and 1,038 to 1,906 American mink (for other traits). Significance (P < 0.05) of fixed effects (farm, sex, and color type), a covariate (age of animal), and random effects (additive genetic, maternal, and common litter) were evaluated through univariate models implemented in ASReml-R version 4. Genetic parameters were estimated via fitting a set of bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.28 ± 0.06, 0.23 ± 0.06, 0.28 ± 0.10, 0.27 ± 0.11, 0.25 ± 0.09, 0.26 ± 0.09, 0.20 ± 0.09, 0.23 ± 0.09, 0.21 ± 0.10, 0.25 ± 0.10, and 0.26 ± 0.10 for HW, HL, FBL, FBW, ADG, DFI, FCR, RFI, RG, RIG, and KR, respectively. RIG had favorable genetic correlations with DFI (-0.62 ± 0.24) and ADG (0.58 ± 0.21), and nonsignificant (P > 0.05) genetic correlations with FBW (0.14 ± 0.31) and FBL (-0.15 ± 0.31). These results revealed that RIG might be a superior trait as it guarantees reduced feed intake with faster-growing mink yet with no negative impacts on body weight and length. In addition, the strong positive genetic correlations (±SE) between KR with component traits (0.88 ± 0.11 with FBW, 0.68 ± 0.17 with FBL, and 0.97 ± 0.02 with ADG) suggested KR as an applicable indirect measure of FE for improvement of component traits as it did not require the individual feed intake to be measured. Overall, our results confirmed the possibility of including FE traits in mink breeding programs to effectively select feed-efficient animals.


Improvement of feed efficiency (FE) in American mink is highly beneficial, as feed costs comprise the largest expense of mink production systems. The present study estimated the heritability, phenotypic and genetic correlations for different FE measures and component traits in mink. The residual intake and gain can be applied as FE measurement in selection programs as it will guarantee faster-growing mink with reduced feed intake, yet without negative impacts on growth traits. In addition, Kleiber ratio had strong positive genetic correlations with component traits, which made this trait an appealing indirect FE trait for mink breeding programs, knowing the fact that this trait was not dependent on feed intake records. Overall, our results suggested that including FE traits can assist mink breeding programs to develop an index for the selection of feed-efficient mink and, therefore, reduce the cost of mink production.


Subject(s)
Eating , Mink , Animal Feed , Animals , Body Weight/genetics , Eating/genetics , Mink/genetics , Phenotype
17.
Front Genet ; 13: 903733, 2022.
Article in English | MEDLINE | ID: mdl-35754793

ABSTRACT

Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.

18.
Genes (Basel) ; 13(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35205343

ABSTRACT

A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut-brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Humans , Livestock/genetics , Meat , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics
19.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34279039

ABSTRACT

Aleutian disease (AD), caused by the Aleutian mink disease virus (AMDV), is a major health concern that results in global economic losses to the mink industry. The unsatisfactory outcome of the culling strategy, immunoprophylaxis, and medical treatment in controlling AD have urged mink farmers to select AD resilient mink based on several detection tests, including enzyme-linked immunosorbent assay (ELISA), counterimmunoelectrophoresis (CIEP), and iodine agglutination test (IAT). However, the genetic analysis of these AD tests and their correlations with pelt quality, reproductive performance, packed-cell volume (PCV), and harvest length (HL) have not been investigated. In this study, data on 5,824 mink were used to estimate the genetic and phenotypic parameters of four AD tests, including two systems of ELISA, CIEP, and IAT, and their genetic and phenotypic correlations with two pelt quality, five female reproductive performance, PCV, and HL traits. Significances (P < 0.05) of fixed effects (sex, year, dam age, and color type), covariates (age at harvest and blood sampling), and random effects (additive genetic, permanent environmental, and maternal effects) were determined under univariate models using ASReml 4.1 software. The genetic and phenotypic parameters for all traits were estimated under bivariate models using ASReml 4.1 software. Estimated heritabilities (±SE) were 0.39 ± 0.06, 0.61 ± 0.07, 0.11 ± 0.07, and 0.26 ± 0.05 for AMDV antigen-based ELISA (ELISA-G), AMDV capsid protein-based ELISA, CIEP, and IAT, respectively. The ELISA-G also showed a moderate repeatability (0.58 ± 0.04) and had significant negative genetic correlations (±SE) with reproductive performance traits (from -0.41 ± 0.16 to -0.49 ± 0.12), PCV (-0.53 ± 0.09), and HL (-0.45 ± 0.16). These results indicated that ELISA-G had the potential to be applied as an indicator trait for genetic selection of AD resilient mink in AD endemic ranches and therefore help mink farmers to reduce the adverse effects caused by AD.


Subject(s)
Aleutian Mink Disease Virus , Aleutian Mink Disease , Aleutian Mink Disease Virus/genetics , Animals , Antibodies, Viral , Cell Size , Female , Mink
20.
Front Genet ; 12: 665344, 2021.
Article in English | MEDLINE | ID: mdl-34149806

ABSTRACT

Improvement of prediction accuracy of estimated breeding values (EBVs) can lead to increased profitability for swine breeding companies. This study was performed to compare the accuracy of different popular genomic prediction methods and traditional best linear unbiased prediction (BLUP) for future performance of back-fat thickness (BFT), average daily gain (ADG), and loin muscle depth (LMD) in Canadian Duroc, Landrace, and Yorkshire swine breeds. In this study, 17,019 pigs were genotyped using Illumina 60K and Affymetrix 50K panels. After quality control and imputation steps, a total of 41,304, 48,580, and 49,102 single-nucleotide polymorphisms remained for Duroc (n = 6,649), Landrace (n = 5,362), and Yorkshire (n = 5,008) breeds, respectively. The breeding values of animals in the validation groups (n = 392-774) were predicted before performance test using BLUP, BayesC, BayesCπ, genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods. The prediction accuracies were obtained using the correlation between the predicted breeding values and their deregressed EBVs (dEBVs) after performance test. The genomic prediction methods showed higher prediction accuracies than traditional BLUP for all scenarios. Although the accuracies of genomic prediction methods were not significantly (P > 0.05) different, ssGBLUP was the most accurate method for Duroc-ADG, Duroc-LMD, Landrace-BFT, Landrace-ADG, and Yorkshire-BFT scenarios, and BayesCπ was the most accurate method for Duroc-BFT, Landrace-LMD, and Yorkshire-ADG scenarios. Furthermore, BayesCπ method was the least biased method for Duroc-LMD, Landrace-BFT, Landrace-ADG, Yorkshire-BFT, and Yorkshire-ADG scenarios. Our findings can be beneficial for accelerating the genetic progress of BFT, ADG, and LMD in Canadian swine populations by selecting more accurate and unbiased genomic prediction methods.

SELECTION OF CITATIONS
SEARCH DETAIL