Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Poverty ; 12(1): 116, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105258

ABSTRACT

BACKGROUND: Progress in malaria control has stalled in recent years and innovative surveillance and response approaches are needed to accelerate malaria control and elimination efforts in endemic areas of Africa. Building on a previous China-UK-Tanzania pilot study on malaria control, this study aimed to assess the impact of the 1,7-malaria Reactive Community-Based Testing and Response (1,7-mRCTR) approach implemented over two years in three districts of Tanzania. METHODS: The 1,7-mRCTR approach provides community-based malaria testing via rapid diagnostic tests and treatment in villages with the highest burden of malaria incidence based on surveillance data from health facilities. We used a difference-in-differences quasi-experimental design with linear probability models and two waves of cross-sectional household surveys to assess the impact of 1,7-mRCTR on malaria prevalence. We conducted sensitivity analyses to assess the robustness of our results, examined how intervention effects varied in subgroups, and explored alternative explanations for the observed results. RESULTS: Between October 2019 and September 2021, 244,771 community-based malaria rapid tests were completed in intervention areas, and each intervention village received an average of 3.85 rounds of 1-7mRCTR. Malaria prevalence declined from 27.4% at baseline to 11.7% at endline in the intervention areas and from 26.0% to 16.0% in the control areas. 1,7-mRCTR was associated with a 4.5-percentage-point decrease in malaria prevalence (95% confidence interval: - 0.067, - 0.023), equivalent to a 17% reduction from the baseline. In Rufiji, a district characterized by lower prevalence and where larviciding was additionally provided, 1,7-mRCTR was associated with a 63.9% decline in malaria prevalence. CONCLUSIONS: The 1,7-mRCTR approach reduced malaria prevalence. Despite implementation interruptions due to the COVID-19 pandemic and supply chain challenges, the study provided novel evidence on the effectiveness of community-based reactive approaches in moderate- to high-endemicity areas and demonstrated the potential of South-South cooperation in tackling global health challenges.


Subject(s)
Malaria , Pandemics , Humans , Prevalence , Tanzania/epidemiology , Cross-Sectional Studies , Pilot Projects , Malaria/epidemiology , Malaria/prevention & control
2.
China CDC Wkly ; 4(28): 605-608, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35919478

ABSTRACT

What is already known about this topic?: Microscopy is the gold standard for parasitological confirmation, but the accuracy of microscopic diagnosis is influenced by the skill of the technicians. An alternative is the immunologic-based malaria rapid diagnostic tests (mRDTs). What is added by this report?: Our study evaluated standard microscopy in health system (SMHS) and mRDTs for focused screening and treatment of malaria (FSAT) in Southern Tanzania. We showed that mRDTs were more sensitive than local SMHS for diagnosing malaria infection. What are the implications for public health practices?: Malaria rapid diagnostic tests can be useful as an alternative to SMHS for FSAT in the local context of Tanzania.

3.
Malar J ; 19(1): 292, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32799857

ABSTRACT

BACKGROUND: In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment. METHODS: The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention. RESULTS: Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes. Malaria prevalence in the intervention wards declined by 81% (from 26% (95% CI 23.7, 7.8), at baseline to 4.9% (95% CI 4.0, 5.9) at endline). In villages receiving the 1,7-mRCTR, the short-term case ratio decreased by over 15.7% (95% CI - 33, 6) compared to baseline. CONCLUSION: The 1,7-mRCTR approach significantly reduced the malaria burden in the areas of high transmission in rural southern Tanzania. This locally tailored approach could accelerate malaria control and elimination efforts. The results provide the impetus for further evaluation of the effectiveness and scaling up of this approach in other high malaria burden countries in Africa, including Tanzania.


Subject(s)
Communicable Disease Control/methods , Community Health Workers/statistics & numerical data , Health Facilities/statistics & numerical data , Malaria/prevention & control , Antimalarials/therapeutic use , Communicable Disease Control/statistics & numerical data , Incidence , Malaria/epidemiology , Malaria/parasitology , Pilot Projects , Prevalence , Rural Population/statistics & numerical data , Tanzania/epidemiology
4.
Infect Dis Poverty ; 8(1): 4, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30646954

ABSTRACT

BACKGROUND: During the past six decades, remarkable success on malaria control has been made in China. The major experience could be shared with other malaria endemic countries including Tanzania with high malaria burden. Especially, China's 1-3-7 model for malaria elimination is one of the most important refined experiences from many years' efforts and key innovation measures for malaria elimination in China. METHODS: The China-UK-Tanzania pilot project on malaria control was implemented from April, 2015 to June, 2018, which was an operational research with two communities receiving the proposed interventions and two comparable communities serving as control sites. The World Health Organization "Test, Treat, Track" (WHO-T3) Initiative, which calls for every suspected case to receive a diagnostic test, every confirmed case to be treated, and for the disease to be tracked, was integrated with Chinese experiences on malaria control and elimination for exploration of a proper model tailored to the local settings. Application of China's 1-3-7 model integrating with WHO-T3 initiative and local resources aiming at reducing the burden of malaria in terms of morbidity and mortality by 30% in the intervention communities in comparison with that at the baseline survey. DISCUSSION: The China-UK-Tanzania pilot project on malaria control was that at China's first pilot project on malaria control in Africa, exploring the feasibility of Chinese experiences by China-Africa collaboration, which is expected that the strategies and approaches used in this project could be potential for scaling up in Tanzania and African countries, and contribute to the acceleration of malaria control and elimination in Africa.


Subject(s)
Community Health Services/methods , Malaria/prevention & control , China , Humans , Incidence , International Cooperation , Malaria/epidemiology , Pilot Projects , Tanzania/epidemiology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...