Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1385811, 2024.
Article in English | MEDLINE | ID: mdl-38765953

ABSTRACT

Background: Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods: We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results: We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions: Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.


Subject(s)
Adipocytes, Beige , Adipogenesis , Adipose Tissue, White , Animals, Newborn , Chromatin , Epigenesis, Genetic , GA-Binding Protein Transcription Factor , Mice, Inbred C57BL , Animals , Mice , Adipocytes, Beige/metabolism , Chromatin/metabolism , Chromatin/genetics , Adipogenesis/genetics , Adipose Tissue, White/metabolism , GA-Binding Protein Transcription Factor/metabolism , GA-Binding Protein Transcription Factor/genetics , Male , Thermogenesis/genetics , Histones/metabolism , Histones/genetics
2.
Nat Commun ; 14(1): 2300, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085539

ABSTRACT

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Subject(s)
Ependymoma , Neoplasm Recurrence, Local , Child , Humans , Child, Preschool , Neoplasm Recurrence, Local/genetics , Chromosomes , Chromosome Mapping , Ependymoma/genetics , Ependymoma/pathology , Genome , Chromatin/genetics
3.
Science ; 378(6615): 68-78, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36201590

ABSTRACT

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Subject(s)
Brain Neoplasms , Chromosomes, Human, Pair 8 , Glioma , Isocitrate Dehydrogenase , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromosomes, Human, Pair 8/genetics , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mice , Mutation , Polymorphism, Single Nucleotide
4.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32445698

ABSTRACT

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Subject(s)
Ependymoma/genetics , Ependymoma/metabolism , Epigenome/genetics , Infratentorial Neoplasms/genetics , Infratentorial Neoplasms/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line , Cell Proliferation/genetics , DNA Methylation/genetics , Epigenomics/methods , Histones/genetics , Histones/metabolism , Humans , Infant , Lysine/genetics , Lysine/metabolism , Male , Mice, Inbred C57BL , Mutation/genetics
5.
Hum Mutat ; 35(1): 41-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24115387

ABSTRACT

We report a novel missense mutation (c.1040G>A, p.Arg347Gln) in MID2, which encodes ubiquitin ligase E3, as the likely cause of X-linked mental retardation in a large kindred. The mutation was observed in all affected and obligate carriers but not in any unaffected males of the family or in population controls (n = 200). When transiently expressed in HEK293T cell line, the mutation was found to abolish the function of the COS domain in the protein. The GFP-tagged mutant protein accumulated in the cytoplasm instead of binding to the cytoskeleton resulting in its altered subcellular localization. Screening of coding exons of this gene in additional 480 unrelated individuals with idiopathic intellectual disability identified another novel variation p.Asn343Ser. This study highlights the growing role of the ubiquitin pathway in intellectual disability and also, the difference in MID2 determined phenotype observed in this study compared with that of its paralogue MID1 reported in literature.


Subject(s)
High-Throughput Nucleotide Sequencing , Mental Retardation, X-Linked/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Binding Sites , Chromosomes, Human, X/genetics , Cytoplasm/metabolism , Cytoskeleton/metabolism , Exons , Female , Genetic Variation , HEK293 Cells , Humans , India , Male , Microtubule Proteins/genetics , Mutation, Missense , Nuclear Proteins/genetics , Pedigree , Polymorphism, Single Nucleotide , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...